
a tutorial on  
Writing SystemVerilog Assertions  

and Planning Where to Use Assertions 

Stu Sutherland 
Sutherland HDL, Inc. 

SystemVerilog Assertions and 
Assertion Planning 

1 of 22 

Austin TX 
September 9, 2015 

A copy of these presentation 
slides is available at  

sutherland-hdl.com/papers.html 



Agenda 

Part 1:  A short tutorial on SystemVerilog Assertions 

Part 2:  Who should write assertions? 

Part 3:  Planning where to use assertions 

 
 

The goal of this tutorial is to encourage both verification engineers 
and design engineers to take advantage of SystemVerilog Assertions! 



Part One: 
A Short Tutorial On 

SystemVerilog 
Assertions 
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What Is 
An Assertion? 

 An assertion is a statement that a certain property must be true 

Design Specification: 
After the request signal is asserted, 
the acknowledge signal must arrive 

1 to 3 clocks later 

 Assertions are used to: 
 Document design intent (e.g.: every request has an acknowledge) 
 Verify design meets the specification over simulation time 
 Verify design assumptions (e.g.: state value is one-hot) 
 Localize where failures occur in the design instead of at the output 
 Provide semantics for formal verification 
 Describe functional coverage points 
 And… requires clarifying ambiguities in spec 
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Verification Without Assertions 

 Before there were special assertion languages like SVA, 
verification checks had to be coded with programming statements 

always @(posedge req) begin 
  @(posedge clk) ; // synch to clock 
  fork: watch_for_ack 
    parameter N = 3; 
    begin: cycle_counter 
      repeat (N) @(posedge clk); 
      $display("Assertion Failure", $time);    
      disable check_ack; 
    end // cycle_counter 
    begin: check_ack 
      @(posedge ack) 
      $display("Assertion Success", $time); 
      disable cycle_counter; 
    end // check_ack 
  join: watch_for_ack 
end 

To test for a sequence of 
events requires many lines of 

Verilog code (hard to write) 

Design Specification: 
Each request must be 

followed by an acknowledge 
within 1 to 3 clock cycles 

0 1 2 3 4 5 

req 
ack 

 With SVA, this check 
can be done with one 
line of code! 
assert property (@(posedge clock) req |-> ##[1:3] ack) else $error; 
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Embedded Verification 
Checking and Synthesis 
 Checking code written in Verilog must be hidden from Synthesis 
 Synthesis cannot distinguish the hardware  

model from the embedded checker code 
if (critical_condition) 
   // do true statements 
else  
//synthesis translate_off  
if (critical_condition == 0) 
//synthesis translate_on  
   // do the not true statements 
//synthesis translate_off  
else  
   $display("critical_condition is bad");     
//synthesis translate_on 

RTL code 

checker code 

RTL code 

checker code 

assert (!$isunknown(critical_condition)); 
if (mode) ...  // do true statements 
else      ...  // do not true statements 

 SystemVerilog Assertions are easier, and synthesis ignores SVA 

This checking code is 
hidden from synthesis, 
but it is always active 

in simulation (not easy 
to disable for reset or 
for low-power mode) 

assert is ignored by synthesis and 
can be disabled during simulation 
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SystemVerilog Has  
Two Types of  Assertions 

 Immediate assertions test for a condition at the current time 
always_comb begin 
  assert ($onehot(state)) else $fatal; 
  case (state) ...  // RTL code 

generate a fatal error if state 
variable is not a one-hot value 

Concurrent assertions have an extensive set of operators to describe complex design conditions 

An immediate assertion is the same as an if…else statement, but with assertion controls 

a_reqack: assert property (@(posedge clock) data_ready |-> req ##[1:3] ack) 
          else $error; 
 
always_ff @(posedge clock) 
  if (data_ready) req <= 1; ...  // RTL code 

multi-clock “sequences” 
can be defined with very 

concise code 

 Concurrent assertions test for a sequence of events spread over 
multiple clock cycles 

concurrent assertions run as a 
background process in parallel 

with the RTL code 
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Assertion Severity System Tasks 

 The assertion messages can be printed with severity levels 
 $info ( "message", message_arguments ) ; 
 No severity; just print the message 

 $warning ( "message", message_arguments ) ; 
 A run-time warning; software continues execution 

 $error ( "message", message_arguments ) ; 
 A run-time error severity; software continues execution 

 $fatal ( finish_number, "message", message_arguments ) ; 
 Terminates execution of the tool 
 finish_number is 0, 1 or 2, and controls the information printed by the tool upon exit 

(the same tool controls as with $finish) 

• The user-supplied message is appended to a tool-specific message 
containing the source file location and simulation time 

• The message is optional; if not specified the tool-specific message 
will still be printed 

If a severity level is not 
specified, assertion messages 

default to an error level 

Assertions in a UVM testbench should use the UVM message functions, such as 
uvm_report_warning and uvm_report_error, so that the messages are tracked by UVM 
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Assertion Pass/Fail Actions 

 Assertions can have both pass and fail “actions” 

always @(negedge reset) 
  a_fsm_reset: assert (state == LOAD); No action if pass, default message if fail 

User-defined pass/fail statements can do 
anything you want 
(Tip: use %m to display the hierarchy path 
to the statement containing message) 

assert property (p_req_gnt)  
  $info("Handshaking passed in %m"); 
else 
  $error("Handshaking failed in %m"); 

 The pass and fail statements can be any procedural statement 
 Multiple statements must be grouped with begin…end    

 The pass action is optional 
 If left off, then no action is taken when the assertion passes 

 The fail action is also optional 
 If left off, then a default, tool-generated message is printed with an 

error message severity level  
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Detecting Glitches  
with Assertions 

 There are many reasons signals might change more than once 
during a single clock cycle (a potential glitch) 
 Combinatorial decoding, clock domain crossing, async reset, … 

This glitch within a clock cycle will 
affect my design functionality – I 

need to detect it. 

This glitch within a clock cycle 
will never be stored in my 
registers – I can ignore it. 

You need an 
immediate assertion! 

You need a  
concurrent assertion! 

opcode 

clk 

ADD SUB XOR ROL ADD 

0 1 2 3 4 5 6 

 Immediate assertions are programming statements that 
can evaluate values at any time 

 Concurrent assertions are cycle based, and only 
evaluate values on a clock edge 
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Immediate and Concurrent 
Assertion Pros and Cons 

You’re the engineer – 
which of these pros and 
cons are most important 

in your project? 

Immediate Assertions 
 Pros: 
 Easy to write – simple syntax 
 Close to code being checked 
 Can check asynchronous 

values between clock cycles 
 Self-documenting code 
 Cons: 
 Cannot use binding (later  slide) 
 Difficult to disable during reset 

or low-power 
 Must following good RTL 

practices to prevent race 
conditions (just like any 
programming statement) 

Concurrent Assertions 
 Pros: 
 Background task – define it and it 

just runs 
 Cycle based – no glitches 

between cycles 
 Can use binding (see later slide) 
 Works with simulation and formal 

verification 
 Cons: 
 More difficult to define (and 

debug) 
 Can be far from code being 

checked 
 Cannot detect glitches 
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Concurrent Assertions 
are Cycle Based 

 A sequence is a series of true/false expressions spread over one 
or more clock cycles 
 ## represents a “cycle delay” 
 Specifies the number of clock cycles to wait until the next 

expression in the sequence is evaluated 
 The first expression is evaluated immediately 
 Subsequent expressions are evaluated at later clock cycles 

property p_request_grant; 

  @(posedge clock) 
  request ##1 grant ##[1:3] !request && !grant; 
endproperty 

ap_request_grant : assert property (p_request_grant); else $fatal;   

 request must be followed one clock cycle later by grant   
 grant must followed one to three clock cycles later by !request and!grant  

Delay for a range of cycles Delay 1 cycle 

“@(posedge clock)” is not a delay, it 
specifies what a cycle is for this property 
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A Concurrent Assertion Gotcha 

 Concurrent assertions start a new thread every clock cycle 
property pReqAck; 
  @(posedge clk) 
  req ##2 ack; 
endproperty: p_req_ack 

apReqAck: assert property (pReqAck); 

The fix for this gotcha is something called an implication operator (see next page) 

1 

An evaluation thread  
starts at time 10 

Request is true so the thread 
continues, and at time 30 

this thread succeeds 

20ns 10ns 0ns 30ns 40ns 

ack 

req 

clk 

F S F F apReqAck 

New evaluation threads  
start at time 20, 30 and 40 
Request is false so each 
of these threads fails at 

those times 

2 3 4 
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Conditioning Sequences Using 
Implication Operators 

 A sequence can be conditioned with an implication operator  
 If the condition is true, the sequence is evaluated 
 If the condition is false, the sequence is not evaluated (a don’t care) 

overlapped 

req 
mem_en 

clk 

ack 

(req ##2 ack) 

 |-> overlapped implication: sequence evaluation starts immediately 
property p_req_ack; 
  @(posedge clk)  
  mem_en |-> req ##2 ack; 
endproperty: p_req_ack 

The |=>  (non-overlapped implication) is the same as  |-> ##1 (overlapped plus 1 cycle)  

 |=> non-overlapped implication:  
sequence evaluation starts at the next clock 

property p_req_ack; 
  @(posedge clk) 
  mem_en |=> req ##2 ack; 
endproperty: p_req_ack 

req 
mem_en 

clk 

ack 

(req ##2 ack) non-overlapped 
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Implication Terminology 

 Antecedent — the expression before the implication operator 
 The evaluation only continues if the antecedent is true 
 Consequent — the expression after the implication operator 
 Vacuous success — if the antecedent is false, the property is 

considered “vacuously true” 
 The check is not of interest, so evaluation is aborted without 

considering it a failure 

property p_handshake; 

  @(posedge clk) 

    request  |=> acknowledge ##1 data_enable ##2 done; 

endproperty: p_handshake 

“antecedent” (or cause) — if FALSE, the property succeeds 
vacuously; if TRUE, then the sequence continues 

“consequent” (or effect) — only 
evaluated if antecedent succeeds 

“implication operator” 
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Using Concurrent Assertions 
with Zero-delay RTL Models 

 In RTL models, most signals change on a clock edge 
 RTL models are typically modeled with zero delay 
 Register outputs change immediately on the clock edge  

property p_req_ack; 
  @(posedge clk) 
  req |-> ##2 ack ##1 !ack; 
endproperty: p_req_ack 

ap_req_ack: assert property (p_req_ack); 

req 

clk 

ack 

0 10 20 30 40 50 

 Is req 0 or 1 at time 10? 

 What about at time 20? 

 Is ack 0 or 1 at time 40 

 At what time does this assertion pass or fail? 
Concurrent assertions sample values in a “Preponed event region” – the assertion always 

sees the value that existed before the clock edge causes any changes 

0 
1 
1 

50 
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Quiz: Does This Assertion Match 
the Design Specification? 

 Given the following assertion: 
 
 
 

 Will this event sequence pass or fail? 
 
 
 

 Is this a faulty design or a faulty assertion? 
 It depends on the design specification! 

req 

clk 

ack 

property p_req_ack; 
 @(posedge clk) req |-> ##2 ack; 
endproperty: p_req_ack 

ap_req_ack: assert property (p_req_ack); 

If there is an ack, 
then req must be true 
2 clock cycles later 

The assertion will pass — it checks that ack 
is true on the 2nd clock after req; it does not 

check for when ack transitioned to true 

1 

S 

Spec 1: A req (request) should be followed two cycles later by ack (acknowledge). 
The ack line can be tied high so that all requests are automatically acknowledged. 

Spec 2: A req (request) should be followed two cycles later by a rising edge of ack 
(acknowledge). The ack is only allowed to be high for one clock cycle. 
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Value Change Functions 

 Special functions test for a value change between adjacent clock cycles: 
$rose(expression, cycle_definition); 
 Returns true if the LSB of the expression changed to 1 

$fell(expression, cycle_definition); 
 Returns true if the LSB of the expression changed to 0 

$changed(expression, cycle_definition); 
 Returns true if the value of the expression changed 

$stable(expression, cycle_definition); 
 Returns true if the value of the expression did not change 

These functions evaluate 
sampled values – they 

compare the value that was 
sampled at the beginning 

of the previous clock cycle 
with the value that was 

sampled at the beginning 
of the current clock cycle 

The cycle_definition is optional and seldom needed (see notes below); It specifies what 
clock to use for sampling the expression (e.g.: $rose(ack, @posedge master_clk) ) 

property p_req_ack; 
  @(posedge clk) 
  req |-> ##2 $rose(ack) ##1 !ack; 
endproperty: p_req_ack 

ap_req_ack: assert property (p_req_ack); 

Design Spec: A req (request) should be followed two cycles later by a rising edge 
of ack (acknowledge). The ack is only allowed to be high for one clock cycle. 

req 

clk 

ack 
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Assertions and Coverage 

 Coverage is a metric for evaluating the progress of verification 
 Measures the completeness of the verification tests 

 SystemVerilog provides two types of coverage 
 Functional coverage reports how many times specific values occur 
 Uses covergroup definitions 
 Checks current values at specific times during simulation 
 State coverage reports how many times assertions evaluate 
 Uses an assertion cover statement 
 Checks for sequences of conditions over multiple clock cycles 

Assertion 
coverage is 
discussed 

in more 
detail later 

in the 
course 

caFifoNearMax: cover sequence  
  (@(posedge clk)  
  almost_full ##1 push ##1 push);   

Did I test the FIFO 
operating at a nearly 

full condition? 

Design Specification: 
The FIFO almost_full flag is set when 

there are 2 locations remaining in the FIFO 



Part Two: 
Who Should Write 

Assertions 
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Which Engineer Writes the 
Assertions for Your Projects? 

Four engineers worked on an important design.  Their names were: 
Tom Somebody, Dick Everybody, Harry Anybody, and Sally Nobody.   

Each engineer was responsible to design and verify a sub block of 
the design.  Everybody had attended training on SystemVerilog 
Assertions, and was sure that Somebody would write assertions to 
verify that the full design worked correctly.  Anybody could have 
written them, but it ended up that Nobody did it.   

When the design was implemented in silicon, it did not work 
according to the specification.  Everybody blamed Somebody 
because Nobody did what Anybody could have done. 

Once upon a time… 
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Guideline for  
Who Writes Assertions! 

 
 Verification engineers should write assertions that verify design 

functionality meets the overall design specification 
 The assertion verifies that the designer correctly implemented the 

specification 
 Example: The zero flag output of the ALU block should only be set if the 

ALU result output is zero 

 Design engineers should write assertions to verify assumptions that 
affect the functionality of a design block 
 The assertion documents the designer’s assumptions 
 Example: The ALU block assumes that the A, B and opcode inputs will 

never have a logic X or Z value 
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Design Engineers  
Should Add Assertions to RTL! 

 RTL models assume inputs and other values are valid 
 Input ports are connected (no floating input values) 
 Control signals are never a logic X 
 State machine encoding is a legal value 
 Data values are within an expected range 
 Parameter redefinitions meet design requirements 
 These assumptions can be should be verified using assertions 
 Most of these can be done with simple 1-line assertions 

The paper  
“Who Put Assertions In My RTL Code? And Why”  

has examples of these types of assertions 

(available to download from sutherland-hdl.com) 
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Verification Engineers Can Bind 
Assertions to Design Blocks 

 SystemVerilog assertions can be defined in a separate file and:  
 Bound to all instances of a design module or interface 
 Bound to a specific instance of a design module or interface 
 

 Binding allows verification engineers to 
add assertions to a design without 
modifying the design files 

 Binding allows updating assertions 
without affecting RTL code time-stamps 
(which could trigger unnecessary 
synthesis runs) 

 Binding can also be used to bind in 
coverage and other functionality 

NOTE:  Only concurrent assertions can be 
directly bound into other modules 



1 

When To Embed Assertions, 
When To Bind In Assertions 

Sutherland HDL recommends … 
 Design engineers should embed assertions into the RTL code 
 Validate all assumptions (e.g.  control inputs are connected) 
 Trap invalid data values where they first show up 
 Embedded assertions should be written at the same time the RTL 

code is being developed! 
 Verification engineers should add bound-in assertions  
 Verify the design functionality matches the specification 
 Verify that corner cases work as expected (e.g.: FIFO full) 
 Verify coverage of critical data points  
 By using binding: 
 There is no need to check out and modify the RTL model files 
 Adding assertions not affect RTL file time stamps 

1There can be exceptions to this guideline – you get paid the big money to figure 
out which way of specifying assertions is best for your projects! 
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Embedded versus Bound 
Assertions – Pros and Cons 

Assertion Binding 
 Pros: 
 Do not need RTL file access 

permissions to add assertions 
 Adding assertions does not 

impact RTL file time-stamps 
 Cons: 
 Assertions can be far from the 

code being checked 
 RTL engineers must edit 

multiple files to add assertions 
while the RTL modes is being 
developed 
 Cannot (easily) use immediate 

assertions 

Assertions Embedded in RTL  
 Pros: 
 Close to the code being verified 
 Can use both concurrent and 

immediate assertions 
 Document designer’s 

assumptions and intentions 
 Assertion errors originate from 

same file as the failure 
 Cons: 
 Adding/modifying an assertion 

could trigger automated 
regression or synthesis scripts 
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SystemVerilog Design Constructs  
with Built-in Assertion Behavior 

 Some SystemVerilog constructs have built-in assertion-like 
checking! 
 always_comb / always_ff  
 Allows tools to check that procedural code matches intent 
 Check that procedural block variables are not written to elsewhere 
 unique case / unique if…else  
 Check that decision statements are fully specified 
 Check that decision branches are mutually exclusive 
 enum Enumerated variables  
 Check that assignments are within the legal set of values 
 Check that two or more labels (e.g. state names) do not  

have the same value 
By using these constructs, designer’s get the advantages 
of self-checking code, without writing assertion statements! 



Part Three: 
Planning Where to 

Use Assertions 



9-29 
Developing An  
Assertions Test Plan 

 Part of a Verification Test Plan is an “Assertions Test Plan” 
 Specifies what functionality needs to be verified with assertions 

 What type of assertion is needed for each test 
 Immediate or concurrent?   Invariant, sequential or eventuality? 

 Where the assertion should be placed 
 Embedded in the design? 
 At the system interconnect level? 
 Bound into the design? 

 Which team is responsible for writing each assertion 
 The verification team? 
 The design team? 

The Assertions Test Plan should be developed before any design code is written! 

Assertion Based Verification 
should take advantage of all of 

these capabilities 
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Case Study:  
Assertions for a Small DSP 

 A small Digital Signal Processor (DSP) design is used in this 
presentation to illustrate how to use SystemVerilog Assertions 

 The DSP contains… 
 A clock generator and 

reset synchronizer 
 A state machine 
 Several registers 
 A program counter 
 Combinatorial decoder and ALU 
 Program and data memories 
 A tri-state data bus 

 The DSP has many places where assertions can be — and 
should be —used! 

alu 

pc register 

iobuf 

status_reg 

clock_gen 

decoder controller 

iobuf 

register 

ram 

ram 
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Assertions Test  
Plan: ALU 

module alu (...); 
  always_comb begin 
    ai_a_never_x: assert (!$isunknown(a)); 
    ...   
    unique case (opcode) 
      ...  // decode operations 
    endcase  
  end 

module assertions (...);  // to be bound to dsp top-level netlist 
  property p_zbit_set_on_zero (clk); 
    @(posedge clk) (alu_out == 0) |-> zbit;   
  endproperty 
  p_zbit_set_on_zero: assert property (p_zbit_set_on_zero(sys_clk)); 

Functionality to Verify Assertion Type Assigned To 

The a, b and opcode inputs never have any bits that are X or Z immediate design team 

All opcode values are decoded unique case design team 

The zbit output must be set whenever result output is 0 concurrent verification team 

… 

xbit 

b [15:0] a [15:0] 

opcode [2:0] alu 

result [15:0] zbit 

Check that inputs meet design assumptions 

“unique” verifies that all opcode values that  occur are decoded 

On any cycle that alu_out 
is zero, zbit must be set 

What other assertions are needed? (Answering this question is part of the final project…) 

Be careful with using unique case – it 
also affects synthesis! 
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Exercise: 
Assertions Test Plan for the ALU 

 
 

 

 A combinational logic Arithmetic Logic Unit, that can perform 8 
different types of operations (see notes section, below) 

xbit 

b [15:0] a [15:0] 

opcode [2:0] alu 

result [15:0] zbit 

ASSIGNMENT:  
Plan some assertions for the DSP 
blocks on this page and the next 3 

pages.  We will then discuss the test 
plan ideas as a class 

Functionality to Verify Assertion Type Assigned To Functionality to Verify Assertion Type Assigned To 

The a, b and opcode inputs never have any bits that are X or Z immediate design team 

All opcode values are decoded unique case design team 

After reset, result should never have an X or Z value concurrent verification team 

zbit must be set if result is 0; and cleared if result is not 0 concurrent verification team 

xbit is set for Add operations if a + b is greater than (2**16)-1 concurrent verification team 

xbit is set for Multiply operation if a * b is greater than (2**16)-1 concurrent verification team 

xbit is set for Subtract operations if a is less than b concurrent verification team 

xbit is never set for non arithmetic operations concurrent verification team 
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Exercise: 
Assertions Test Plan for the RAM 

 
 
 

 A 4K by 16-bit asynchronous RAM with a bi-directional data port 
 Reading from the RAM occurs whenever rdN is low 
 Writing into the RAM occurs whenever wrN is low 
 Behavior is undefined if rdN and wrN are low at the same time 

ram 

wrN 
rdN 

addr [11:0] data [15:0] 
4k x 16 

Functionality to Verify Assertion Type Assigned To Functionality to Verify Assertion Type Assigned To 

!rdN (read) and !wrN (write) are mutually exclusive immediate design team 

addr never has X or Z bits when wrN is low (writing into RAM) immediate design team 

data never has X or Z bits when wrN is low (writing into RAM) immediate design team 

addr never has X or Z bits when rdN is low (reading from RAM) immediate design team 

data never has X or Z bits when rdN is low (reading from RAM) concurrent verification team 



9-34 
Exercise:  Assertions Test Plan  
for the Program Counter 

 
 
 

 The Program Counter is a sequential logic 12-bit counter 
  rstN is asynchronous — the counter is reset to zero 
 Counter loads with the value of the d input on the positive edge of 
clk, when load is high 
 Counter increments on the positive edge of clk, when inc is high 

Functionality to Verify Assertion Type Assigned To 

pc 

rstN 

load 
inc 

d [11:0] 

clk > 

cnt [11:0] 

Functionality to Verify Assertion Type Assigned To 

load and inc (increment) are mutually exclusive immediate design team 

If load is high, d never has X or Z bits immediate design team 

If load, then, after clk to cnt delay, cnt has the value of d concurrent verification team 

If inc, then, after clk to cnt delay, cnt has incremented by 1 concurrent verification team 

If !load and !inc, then cnt does not change concurrent verification team 
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Exercise:  Assertions Test Plan  
for the Controller 

 
 
 
 
 
 The controller is a 1-hot finite state machine that sets the control 

lines for the various DSP blocks 
  rstN is asynchronous — the controller resets to the RESET state 

Functionality to Verify Assertion Type Assigned To 

controller load_s 
load_b 
load_f 
load_pc 

rslt_oeN (low true) 
dout_oeN (low true) 

dmem_wrN (low true) 

inc_pc 

dmem_rdN (low true) 

set_br 

clk > 

exception 

zero_flag 

rstN 

instruction [3:0] 

halt 

branching 

Functionality to Verify Assertion Type Assigned To 

The instruction input never has X or Z bits immediate design team 

At a positive edge of clk, state is always 1-hot concurrent verification team 

If in DECODE state, then the prior state was RESET or STORE  concurrent verification team 

If in LOAD state, then the prior state was DECODE  concurrent verification team 

If in STORE state, then the prior state was LOAD  concurrent verification team 
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Assertion Test Plan  
Considerations 

 Some things to think about when developing an Assertions Test 
Plan include… 
 It takes time to write the assertions test plan 
 It is not a trivial task, but it is critical to successfully using SVA! 
 The assertion test plan helps identify similar assertions 
 Can write an assertion once, and use it in several places 
 Assertions should not just duplicate the RTL code 
 Engineers need to learn to think differently 
 Which assertions should be disabled for reset or lower-power mode? 
 False assertion failures can occur if they are not disabled 
 The test plan needs to be flexible 
 Some times the responsibility for which team should write the 

assertion needs to change 
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More Assertion Test Plan 
Considerations 

 Assertions may require different design partitioning 
 Example: The DSP ALU block is difficult to check with concurrent 

assertions because it is pure combinational logic (no clock) 
 Better design partitioning would put the ALU and its input and output 

registers into one design block 

 Enumerated type definitions should be defined globally 
 Example: If the DSP state machine uses a local enumerated variable 

for the state names, then assertions written external to the state 
machine cannot access those enumerated names 

 Enumerated types should have explicit values defined for each label 
 After synthesis, labels disappear and only logic values exist 
 Assertions become invalid if the label does not have an explicit value 
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Summary 

 SystemVerilog Assertions really do work! 
 An effective way to verify many aspects of design functionality 
 Find errors that functional verification might miss 
 Verification Engineers should bind in assertions that validate the 

RTL code matches the design specification 

 RTL Design Engineers should embed assertions that validate 
assumptions directly into RTL code as the code is being written 

 There are big advantages to RTL designers specifying assertions 
 Validate design requirements work as specified 
 Validate assumptions on which the RTL model depends 
 Localize where functional problem occurred 
 Clarify specification ambiguities  

Do It!  
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Question?     
Comments? 

Four engineers worked on an important design.  Their names were: 
Tom Somebody, Dick Everybody, Harry Anybody, and Sally Nobody.   

Each engineer was responsible to design and verify a sub block of 
the design.  Everybody had attended Sutherland HDL’s 
SystemVerilog Assertions training, and was sure that Somebody 
would write assertions to verify that the full design worked 
correctly.  Anybody could have written them, but it ended up that 
Nobody did it.   

When the design was implemented in silicon, it did not work 
according to the specification.  Everybody blamed Somebody 
because Nobody did what Anybody could have done. 

Once upon a time… 

A copy of these presentation slides 
is available at  

sutherland-hdl.com/papers.html 
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