
a tutorial on
Writing SystemVerilog Assertions

and Planning Where to Use Assertions

Stu Sutherland
Sutherland HDL, Inc.

SystemVerilog Assertions and
Assertion Planning

1 of 22

Austin TX
September 9, 2015

A copy of these presentation
slides is available at

sutherland-hdl.com/papers.html

Agenda

Part 1: A short tutorial on SystemVerilog Assertions

Part 2: Who should write assertions?

Part 3: Planning where to use assertions

The goal of this tutorial is to encourage both verification engineers
and design engineers to take advantage of SystemVerilog Assertions!

Part One:
A Short Tutorial On

SystemVerilog
Assertions

9-4
What Is
An Assertion?

 An assertion is a statement that a certain property must be true

Design Specification:
After the request signal is asserted,
the acknowledge signal must arrive

1 to 3 clocks later

 Assertions are used to:
 Document design intent (e.g.: every request has an acknowledge)
 Verify design meets the specification over simulation time
 Verify design assumptions (e.g.: state value is one-hot)
 Localize where failures occur in the design instead of at the output
 Provide semantics for formal verification
 Describe functional coverage points
 And… requires clarifying ambiguities in spec

0 1 2 3 4 5

req
ack

9-5

Verification Without Assertions

 Before there were special assertion languages like SVA,
verification checks had to be coded with programming statements

always @(posedge req) begin
 @(posedge clk) ; // synch to clock
 fork: watch_for_ack
 parameter N = 3;
 begin: cycle_counter
 repeat (N) @(posedge clk);
 $display("Assertion Failure", $time);
 disable check_ack;
 end // cycle_counter
 begin: check_ack
 @(posedge ack)
 $display("Assertion Success", $time);
 disable cycle_counter;
 end // check_ack
 join: watch_for_ack
end

To test for a sequence of
events requires many lines of

Verilog code (hard to write)

Design Specification:
Each request must be

followed by an acknowledge
within 1 to 3 clock cycles

0 1 2 3 4 5

req
ack

 With SVA, this check
can be done with one
line of code!
assert property (@(posedge clock) req |-> ##[1:3] ack) else $error;

9-6
Embedded Verification
Checking and Synthesis
 Checking code written in Verilog must be hidden from Synthesis
 Synthesis cannot distinguish the hardware

model from the embedded checker code
if (critical_condition)
 // do true statements
else
//synthesis translate_off
if (critical_condition == 0)
//synthesis translate_on
 // do the not true statements
//synthesis translate_off
else
 $display("critical_condition is bad");
//synthesis translate_on

RTL code

checker code

RTL code

checker code

assert (!$isunknown(critical_condition));
if (mode) ... // do true statements
else ... // do not true statements

 SystemVerilog Assertions are easier, and synthesis ignores SVA

This checking code is
hidden from synthesis,
but it is always active

in simulation (not easy
to disable for reset or
for low-power mode)

assert is ignored by synthesis and
can be disabled during simulation

9-7
SystemVerilog Has
Two Types of Assertions

 Immediate assertions test for a condition at the current time
always_comb begin
 assert ($onehot(state)) else $fatal;
 case (state) ... // RTL code

generate a fatal error if state
variable is not a one-hot value

Concurrent assertions have an extensive set of operators to describe complex design conditions

An immediate assertion is the same as an if…else statement, but with assertion controls

a_reqack: assert property (@(posedge clock) data_ready |-> req ##[1:3] ack)
 else $error;

always_ff @(posedge clock)
 if (data_ready) req <= 1; ... // RTL code

multi-clock “sequences”
can be defined with very

concise code

 Concurrent assertions test for a sequence of events spread over
multiple clock cycles

concurrent assertions run as a
background process in parallel

with the RTL code

0 1 2 3 4 5

req
ack

9-8

Assertion Severity System Tasks

 The assertion messages can be printed with severity levels
 $info ("message", message_arguments) ;
 No severity; just print the message

 $warning ("message", message_arguments) ;
 A run-time warning; software continues execution

 $error ("message", message_arguments) ;
 A run-time error severity; software continues execution

 $fatal (finish_number, "message", message_arguments) ;
 Terminates execution of the tool
 finish_number is 0, 1 or 2, and controls the information printed by the tool upon exit

(the same tool controls as with $finish)

• The user-supplied message is appended to a tool-specific message
containing the source file location and simulation time

• The message is optional; if not specified the tool-specific message
will still be printed

If a severity level is not
specified, assertion messages

default to an error level

Assertions in a UVM testbench should use the UVM message functions, such as
uvm_report_warning and uvm_report_error, so that the messages are tracked by UVM

9-9

Assertion Pass/Fail Actions

 Assertions can have both pass and fail “actions”

always @(negedge reset)
 a_fsm_reset: assert (state == LOAD); No action if pass, default message if fail

User-defined pass/fail statements can do
anything you want
(Tip: use %m to display the hierarchy path
to the statement containing message)

assert property (p_req_gnt)
 $info("Handshaking passed in %m");
else
 $error("Handshaking failed in %m");

 The pass and fail statements can be any procedural statement
 Multiple statements must be grouped with begin…end

 The pass action is optional
 If left off, then no action is taken when the assertion passes

 The fail action is also optional
 If left off, then a default, tool-generated message is printed with an

error message severity level

9-10
Detecting Glitches
with Assertions

 There are many reasons signals might change more than once
during a single clock cycle (a potential glitch)
 Combinatorial decoding, clock domain crossing, async reset, …

This glitch within a clock cycle will
affect my design functionality – I

need to detect it.

This glitch within a clock cycle
will never be stored in my
registers – I can ignore it.

You need an
immediate assertion!

You need a
concurrent assertion!

opcode

clk

ADD SUB XOR ROL ADD

0 1 2 3 4 5 6

 Immediate assertions are programming statements that
can evaluate values at any time

 Concurrent assertions are cycle based, and only
evaluate values on a clock edge

9-11
Immediate and Concurrent
Assertion Pros and Cons

You’re the engineer –
which of these pros and
cons are most important

in your project?

Immediate Assertions
 Pros:
 Easy to write – simple syntax
 Close to code being checked
 Can check asynchronous

values between clock cycles
 Self-documenting code
 Cons:
 Cannot use binding (later slide)
 Difficult to disable during reset

or low-power
 Must following good RTL

practices to prevent race
conditions (just like any
programming statement)

Concurrent Assertions
 Pros:
 Background task – define it and it

just runs
 Cycle based – no glitches

between cycles
 Can use binding (see later slide)
 Works with simulation and formal

verification
 Cons:
 More difficult to define (and

debug)
 Can be far from code being

checked
 Cannot detect glitches

9-12
Concurrent Assertions
are Cycle Based

 A sequence is a series of true/false expressions spread over one
or more clock cycles
 ## represents a “cycle delay”
 Specifies the number of clock cycles to wait until the next

expression in the sequence is evaluated
 The first expression is evaluated immediately
 Subsequent expressions are evaluated at later clock cycles

property p_request_grant;

 @(posedge clock)
 request ##1 grant ##[1:3] !request && !grant;
endproperty

ap_request_grant : assert property (p_request_grant); else $fatal;

 request must be followed one clock cycle later by grant
 grant must followed one to three clock cycles later by !request and!grant

Delay for a range of cycles Delay 1 cycle

“@(posedge clock)” is not a delay, it
specifies what a cycle is for this property

9-13

A Concurrent Assertion Gotcha

 Concurrent assertions start a new thread every clock cycle
property pReqAck;
 @(posedge clk)
 req ##2 ack;
endproperty: p_req_ack

apReqAck: assert property (pReqAck);

The fix for this gotcha is something called an implication operator (see next page)

1

An evaluation thread
starts at time 10

Request is true so the thread
continues, and at time 30

this thread succeeds

20ns 10ns 0ns 30ns 40ns

ack

req

clk

F S F F apReqAck

New evaluation threads
start at time 20, 30 and 40
Request is false so each
of these threads fails at

those times

2 3 4

9-14
Conditioning Sequences Using
Implication Operators

 A sequence can be conditioned with an implication operator
 If the condition is true, the sequence is evaluated
 If the condition is false, the sequence is not evaluated (a don’t care)

overlapped

req
mem_en

clk

ack

(req ##2 ack)

 |-> overlapped implication: sequence evaluation starts immediately
property p_req_ack;
 @(posedge clk)
 mem_en |-> req ##2 ack;
endproperty: p_req_ack

The |=> (non-overlapped implication) is the same as |-> ##1 (overlapped plus 1 cycle)

 |=> non-overlapped implication:
sequence evaluation starts at the next clock

property p_req_ack;
 @(posedge clk)
 mem_en |=> req ##2 ack;
endproperty: p_req_ack

req
mem_en

clk

ack

(req ##2 ack) non-overlapped

9-15

Implication Terminology

 Antecedent — the expression before the implication operator
 The evaluation only continues if the antecedent is true
 Consequent — the expression after the implication operator
 Vacuous success — if the antecedent is false, the property is

considered “vacuously true”
 The check is not of interest, so evaluation is aborted without

considering it a failure

property p_handshake;

 @(posedge clk)

 request |=> acknowledge ##1 data_enable ##2 done;

endproperty: p_handshake

“antecedent” (or cause) — if FALSE, the property succeeds
vacuously; if TRUE, then the sequence continues

“consequent” (or effect) — only
evaluated if antecedent succeeds

“implication operator”

9-16
Using Concurrent Assertions
with Zero-delay RTL Models

 In RTL models, most signals change on a clock edge
 RTL models are typically modeled with zero delay
 Register outputs change immediately on the clock edge

property p_req_ack;
 @(posedge clk)
 req |-> ##2 ack ##1 !ack;
endproperty: p_req_ack

ap_req_ack: assert property (p_req_ack);

req

clk

ack

0 10 20 30 40 50

 Is req 0 or 1 at time 10?

 What about at time 20?

 Is ack 0 or 1 at time 40

 At what time does this assertion pass or fail?
Concurrent assertions sample values in a “Preponed event region” – the assertion always

sees the value that existed before the clock edge causes any changes

0
1
1

50

9-17
Quiz: Does This Assertion Match
the Design Specification?

 Given the following assertion:

 Will this event sequence pass or fail?

 Is this a faulty design or a faulty assertion?
 It depends on the design specification!

req

clk

ack

property p_req_ack;
 @(posedge clk) req |-> ##2 ack;
endproperty: p_req_ack

ap_req_ack: assert property (p_req_ack);

If there is an ack,
then req must be true
2 clock cycles later

The assertion will pass — it checks that ack
is true on the 2nd clock after req; it does not

check for when ack transitioned to true

1

S

Spec 1: A req (request) should be followed two cycles later by ack (acknowledge).
The ack line can be tied high so that all requests are automatically acknowledged.

Spec 2: A req (request) should be followed two cycles later by a rising edge of ack
(acknowledge). The ack is only allowed to be high for one clock cycle.

9-18

Value Change Functions

 Special functions test for a value change between adjacent clock cycles:
$rose(expression, cycle_definition);
 Returns true if the LSB of the expression changed to 1

$fell(expression, cycle_definition);
 Returns true if the LSB of the expression changed to 0

$changed(expression, cycle_definition);
 Returns true if the value of the expression changed

$stable(expression, cycle_definition);
 Returns true if the value of the expression did not change

These functions evaluate
sampled values – they

compare the value that was
sampled at the beginning

of the previous clock cycle
with the value that was

sampled at the beginning
of the current clock cycle

The cycle_definition is optional and seldom needed (see notes below); It specifies what
clock to use for sampling the expression (e.g.: $rose(ack, @posedge master_clk))

property p_req_ack;
 @(posedge clk)
 req |-> ##2 $rose(ack) ##1 !ack;
endproperty: p_req_ack

ap_req_ack: assert property (p_req_ack);

Design Spec: A req (request) should be followed two cycles later by a rising edge
of ack (acknowledge). The ack is only allowed to be high for one clock cycle.

req

clk

ack

9-19

Assertions and Coverage

 Coverage is a metric for evaluating the progress of verification
 Measures the completeness of the verification tests

 SystemVerilog provides two types of coverage
 Functional coverage reports how many times specific values occur
 Uses covergroup definitions
 Checks current values at specific times during simulation
 State coverage reports how many times assertions evaluate
 Uses an assertion cover statement
 Checks for sequences of conditions over multiple clock cycles

Assertion
coverage is
discussed

in more
detail later

in the
course

caFifoNearMax: cover sequence
 (@(posedge clk)
 almost_full ##1 push ##1 push);

Did I test the FIFO
operating at a nearly

full condition?

Design Specification:
The FIFO almost_full flag is set when

there are 2 locations remaining in the FIFO

Part Two:
Who Should Write

Assertions

9-21
Which Engineer Writes the
Assertions for Your Projects?

Four engineers worked on an important design. Their names were:
Tom Somebody, Dick Everybody, Harry Anybody, and Sally Nobody.

Each engineer was responsible to design and verify a sub block of
the design. Everybody had attended training on SystemVerilog
Assertions, and was sure that Somebody would write assertions to
verify that the full design worked correctly. Anybody could have
written them, but it ended up that Nobody did it.

When the design was implemented in silicon, it did not work
according to the specification. Everybody blamed Somebody
because Nobody did what Anybody could have done.

Once upon a time…

9-22
Guideline for
Who Writes Assertions!

 Verification engineers should write assertions that verify design

functionality meets the overall design specification
 The assertion verifies that the designer correctly implemented the

specification
 Example: The zero flag output of the ALU block should only be set if the

ALU result output is zero

 Design engineers should write assertions to verify assumptions that
affect the functionality of a design block
 The assertion documents the designer’s assumptions
 Example: The ALU block assumes that the A, B and opcode inputs will

never have a logic X or Z value

9-23
Design Engineers
Should Add Assertions to RTL!

 RTL models assume inputs and other values are valid
 Input ports are connected (no floating input values)
 Control signals are never a logic X
 State machine encoding is a legal value
 Data values are within an expected range
 Parameter redefinitions meet design requirements
 These assumptions can be should be verified using assertions
 Most of these can be done with simple 1-line assertions

The paper
“Who Put Assertions In My RTL Code? And Why”

has examples of these types of assertions

(available to download from sutherland-hdl.com)

9-24
Verification Engineers Can Bind
Assertions to Design Blocks

 SystemVerilog assertions can be defined in a separate file and:
 Bound to all instances of a design module or interface
 Bound to a specific instance of a design module or interface

 Binding allows verification engineers to
add assertions to a design without
modifying the design files

 Binding allows updating assertions
without affecting RTL code time-stamps
(which could trigger unnecessary
synthesis runs)

 Binding can also be used to bind in
coverage and other functionality

NOTE: Only concurrent assertions can be
directly bound into other modules

1

When To Embed Assertions,
When To Bind In Assertions

Sutherland HDL recommends …
 Design engineers should embed assertions into the RTL code
 Validate all assumptions (e.g. control inputs are connected)
 Trap invalid data values where they first show up
 Embedded assertions should be written at the same time the RTL

code is being developed!
 Verification engineers should add bound-in assertions
 Verify the design functionality matches the specification
 Verify that corner cases work as expected (e.g.: FIFO full)
 Verify coverage of critical data points
 By using binding:
 There is no need to check out and modify the RTL model files
 Adding assertions not affect RTL file time stamps

1There can be exceptions to this guideline – you get paid the big money to figure
out which way of specifying assertions is best for your projects!

9-26
Embedded versus Bound
Assertions – Pros and Cons

Assertion Binding
 Pros:
 Do not need RTL file access

permissions to add assertions
 Adding assertions does not

impact RTL file time-stamps
 Cons:
 Assertions can be far from the

code being checked
 RTL engineers must edit

multiple files to add assertions
while the RTL modes is being
developed
 Cannot (easily) use immediate

assertions

Assertions Embedded in RTL
 Pros:
 Close to the code being verified
 Can use both concurrent and

immediate assertions
 Document designer’s

assumptions and intentions
 Assertion errors originate from

same file as the failure
 Cons:
 Adding/modifying an assertion

could trigger automated
regression or synthesis scripts

9-27
SystemVerilog Design Constructs
with Built-in Assertion Behavior

 Some SystemVerilog constructs have built-in assertion-like
checking!
 always_comb / always_ff
 Allows tools to check that procedural code matches intent
 Check that procedural block variables are not written to elsewhere
 unique case / unique if…else
 Check that decision statements are fully specified
 Check that decision branches are mutually exclusive
 enum Enumerated variables
 Check that assignments are within the legal set of values
 Check that two or more labels (e.g. state names) do not

have the same value
By using these constructs, designer’s get the advantages
of self-checking code, without writing assertion statements!

Part Three:
Planning Where to

Use Assertions

9-29
Developing An
Assertions Test Plan

 Part of a Verification Test Plan is an “Assertions Test Plan”
 Specifies what functionality needs to be verified with assertions

 What type of assertion is needed for each test
 Immediate or concurrent? Invariant, sequential or eventuality?

 Where the assertion should be placed
 Embedded in the design?
 At the system interconnect level?
 Bound into the design?

 Which team is responsible for writing each assertion
 The verification team?
 The design team?

The Assertions Test Plan should be developed before any design code is written!

Assertion Based Verification
should take advantage of all of

these capabilities

9-30
Case Study:
Assertions for a Small DSP

 A small Digital Signal Processor (DSP) design is used in this
presentation to illustrate how to use SystemVerilog Assertions

 The DSP contains…
 A clock generator and

reset synchronizer
 A state machine
 Several registers
 A program counter
 Combinatorial decoder and ALU
 Program and data memories
 A tri-state data bus

 The DSP has many places where assertions can be — and
should be —used!

alu

pc register

iobuf

status_reg

clock_gen

decoder controller

iobuf

register

ram

ram

9-31
Assertions Test
Plan: ALU

module alu (...);
 always_comb begin
 ai_a_never_x: assert (!$isunknown(a));
 ...
 unique case (opcode)
 ... // decode operations
 endcase
 end

module assertions (...); // to be bound to dsp top-level netlist
 property p_zbit_set_on_zero (clk);
 @(posedge clk) (alu_out == 0) |-> zbit;
 endproperty
 p_zbit_set_on_zero: assert property (p_zbit_set_on_zero(sys_clk));

Functionality to Verify Assertion Type Assigned To

The a, b and opcode inputs never have any bits that are X or Z immediate design team

All opcode values are decoded unique case design team

The zbit output must be set whenever result output is 0 concurrent verification team

…

xbit

b [15:0] a [15:0]

opcode [2:0] alu

result [15:0] zbit

Check that inputs meet design assumptions

“unique” verifies that all opcode values that occur are decoded

On any cycle that alu_out
is zero, zbit must be set

What other assertions are needed? (Answering this question is part of the final project…)

Be careful with using unique case – it
also affects synthesis!

9-32
Exercise:
Assertions Test Plan for the ALU

 A combinational logic Arithmetic Logic Unit, that can perform 8
different types of operations (see notes section, below)

xbit

b [15:0] a [15:0]

opcode [2:0] alu

result [15:0] zbit

ASSIGNMENT:
Plan some assertions for the DSP
blocks on this page and the next 3

pages. We will then discuss the test
plan ideas as a class

Functionality to Verify Assertion Type Assigned To Functionality to Verify Assertion Type Assigned To

The a, b and opcode inputs never have any bits that are X or Z immediate design team

All opcode values are decoded unique case design team

After reset, result should never have an X or Z value concurrent verification team

zbit must be set if result is 0; and cleared if result is not 0 concurrent verification team

xbit is set for Add operations if a + b is greater than (2**16)-1 concurrent verification team

xbit is set for Multiply operation if a * b is greater than (2**16)-1 concurrent verification team

xbit is set for Subtract operations if a is less than b concurrent verification team

xbit is never set for non arithmetic operations concurrent verification team

9-33
Exercise:
Assertions Test Plan for the RAM

 A 4K by 16-bit asynchronous RAM with a bi-directional data port
 Reading from the RAM occurs whenever rdN is low
 Writing into the RAM occurs whenever wrN is low
 Behavior is undefined if rdN and wrN are low at the same time

ram

wrN
rdN

addr [11:0] data [15:0]
4k x 16

Functionality to Verify Assertion Type Assigned To Functionality to Verify Assertion Type Assigned To

!rdN (read) and !wrN (write) are mutually exclusive immediate design team

addr never has X or Z bits when wrN is low (writing into RAM) immediate design team

data never has X or Z bits when wrN is low (writing into RAM) immediate design team

addr never has X or Z bits when rdN is low (reading from RAM) immediate design team

data never has X or Z bits when rdN is low (reading from RAM) concurrent verification team

9-34
Exercise: Assertions Test Plan
for the Program Counter

 The Program Counter is a sequential logic 12-bit counter
 rstN is asynchronous — the counter is reset to zero
 Counter loads with the value of the d input on the positive edge of
clk, when load is high
 Counter increments on the positive edge of clk, when inc is high

Functionality to Verify Assertion Type Assigned To

pc

rstN

load
inc

d [11:0]

clk >

cnt [11:0]

Functionality to Verify Assertion Type Assigned To

load and inc (increment) are mutually exclusive immediate design team

If load is high, d never has X or Z bits immediate design team

If load, then, after clk to cnt delay, cnt has the value of d concurrent verification team

If inc, then, after clk to cnt delay, cnt has incremented by 1 concurrent verification team

If !load and !inc, then cnt does not change concurrent verification team

9-35
Exercise: Assertions Test Plan
for the Controller

 The controller is a 1-hot finite state machine that sets the control

lines for the various DSP blocks
 rstN is asynchronous — the controller resets to the RESET state

Functionality to Verify Assertion Type Assigned To

controller load_s
load_b
load_f
load_pc

rslt_oeN (low true)
dout_oeN (low true)

dmem_wrN (low true)

inc_pc

dmem_rdN (low true)

set_br

clk >

exception

zero_flag

rstN

instruction [3:0]

halt

branching

Functionality to Verify Assertion Type Assigned To

The instruction input never has X or Z bits immediate design team

At a positive edge of clk, state is always 1-hot concurrent verification team

If in DECODE state, then the prior state was RESET or STORE concurrent verification team

If in LOAD state, then the prior state was DECODE concurrent verification team

If in STORE state, then the prior state was LOAD concurrent verification team

9-36
Assertion Test Plan
Considerations

 Some things to think about when developing an Assertions Test
Plan include…
 It takes time to write the assertions test plan
 It is not a trivial task, but it is critical to successfully using SVA!
 The assertion test plan helps identify similar assertions
 Can write an assertion once, and use it in several places
 Assertions should not just duplicate the RTL code
 Engineers need to learn to think differently
 Which assertions should be disabled for reset or lower-power mode?
 False assertion failures can occur if they are not disabled
 The test plan needs to be flexible
 Some times the responsibility for which team should write the

assertion needs to change

9-37
More Assertion Test Plan
Considerations

 Assertions may require different design partitioning
 Example: The DSP ALU block is difficult to check with concurrent

assertions because it is pure combinational logic (no clock)
 Better design partitioning would put the ALU and its input and output

registers into one design block

 Enumerated type definitions should be defined globally
 Example: If the DSP state machine uses a local enumerated variable

for the state names, then assertions written external to the state
machine cannot access those enumerated names

 Enumerated types should have explicit values defined for each label
 After synthesis, labels disappear and only logic values exist
 Assertions become invalid if the label does not have an explicit value

9-38

Summary

 SystemVerilog Assertions really do work!
 An effective way to verify many aspects of design functionality
 Find errors that functional verification might miss
 Verification Engineers should bind in assertions that validate the

RTL code matches the design specification

 RTL Design Engineers should embed assertions that validate
assumptions directly into RTL code as the code is being written

 There are big advantages to RTL designers specifying assertions
 Validate design requirements work as specified
 Validate assumptions on which the RTL model depends
 Localize where functional problem occurred
 Clarify specification ambiguities

Do It!

9-39
Question?
Comments?

Four engineers worked on an important design. Their names were:
Tom Somebody, Dick Everybody, Harry Anybody, and Sally Nobody.

Each engineer was responsible to design and verify a sub block of
the design. Everybody had attended Sutherland HDL’s
SystemVerilog Assertions training, and was sure that Somebody
would write assertions to verify that the full design worked
correctly. Anybody could have written them, but it ended up that
Nobody did it.

When the design was implemented in silicon, it did not work
according to the specification. Everybody blamed Somebody
because Nobody did what Anybody could have done.

Once upon a time…

A copy of these presentation slides
is available at

sutherland-hdl.com/papers.html

	a tutorial on �Writing SystemVerilog Assertions �and Planning Where to Use Assertions
	Agenda
	Slide Number 3
	What Is�An Assertion?
	Verification Without Assertions
	Embedded Verification Checking and Synthesis
	SystemVerilog Has �Two Types of Assertions
	Assertion Severity System Tasks
	Assertion Pass/Fail Actions
	Detecting Glitches �with Assertions
	Immediate and Concurrent Assertion Pros and Cons
	Concurrent Assertions�are Cycle Based
	A Concurrent Assertion Gotcha
	Conditioning Sequences Using Implication Operators
	Implication Terminology
	Using Concurrent Assertions�with Zero-delay RTL Models
	Quiz: Does This Assertion Match the Design Specification?
	Value Change Functions
	Assertions and Coverage
	Slide Number 20
	Which Engineer Writes the Assertions for Your Projects?
	Guideline for �Who Writes Assertions!
	Design Engineers �Should Add Assertions to RTL!
	Verification Engineers Can Bind Assertions to Design Blocks
	When To Embed Assertions,�When To Bind In Assertions
	Embedded versus Bound Assertions – Pros and Cons
	SystemVerilog Design Constructs �with Built-in Assertion Behavior
	Slide Number 28
	Developing An �Assertions Test Plan
	Case Study: �Assertions for a Small DSP
	Assertions Test �Plan: ALU
	Exercise:�Assertions Test Plan for the ALU
	Exercise:�Assertions Test Plan for the RAM
	Exercise: Assertions Test Plan �for the Program Counter
	Exercise: Assertions Test Plan �for the Controller
	Assertion Test Plan �Considerations
	More Assertion Test Plan Considerations
	Summary
	Question? �Comments?

