
1

SystemVerilog, ModelSim,
and You

Is there anything in SystemVerilog
useful in your work?

Stuart Sutherland
Sutherland HDL, Inc.

SS, SystemVerilog, ModelSim, and You, April 2004
2

Agenda

Overview of SystemVerilog
Convenience enhancements to Verilog
RTL modeling enhancements to Verilog
Abstract modeling enhancements to Verilog
Verification enhancements to Verilog
ModelSim support for SystemVerilog
Suggestions on adopting SystemVerilog
Conclusions

2

SS, SystemVerilog, ModelSim, and You, April 2004
3

What is SystemVerilog?

SystemVerilog extends of the IEEE 1364 Verilog standard
– New design modeling capabilities

Abstract C language data types
More accurate RTL coding
Interfaces for communication

– New verification capabilities
Assertions
Race-free test benches
Object-oriented test programs

SystemVerilog is the next generation of the Verilog standard
– Gives Verilog a much higher level of modeling abstraction
– Gives Verilog advanced capabilities for design verification

SS, SystemVerilog, ModelSim, and You, April 2004
4

Mile High View of SystemVerilog

from C / C++

initial
disable
events
wait # @
fork–join

$finish $fopen $fclose
$display $write
$monitor
`define `ifdef `else
`include `timescale

wire reg
integer real
time
packed arrays
2D memory

+ = * /
%
>> <<

modules
parameters
function/tasks
always @
assign

begin–end
while
for forever
if–else
repeat

Verilog-1995

ANSI C style ports
generate
localparam
constant functions

standard file I/O
$value$plusargs
`ifndef `elsif `line
@*

(* attributes *)
configurations
memory part selects
variable part select

multi dimensional arrays
signed types
automatic
** (power operator)

Verilog-2001

SystemVerilog

globals
enum
typedef
structures
unions
casting
const

break
continue
return
do–while
++ -- += -= *= /=
>>= <<= >>>= <<<=
&= |= ^= %=

int
shortint
longint
byte
shortreal
void
alias

interfaces
nested hierarchy
unrestricted ports
automatic port connect
enhanced literals
time values and units
specialized procedures

packages
2-state modeling
packed arrays
array assignments
queues
unique/priority case/if
compilation unit space

de
si

gn

assertions
test program blocks
clocking domains
process control

mailboxes
semaphores
constrained random values
direct C function calls

classes
inheritance
strings

dynamic arrays
associative arrays
references

ve
rif

ic
at

io
n

3

SS, SystemVerilog, ModelSim, and You, April 2004
5

SystemVerilog is an Evolution

SystemVerilog evolves Verilog, rather than replacing it
– Gives engineers the best of Verilog and C and Vera

This is easy,
it’s just like

using Verilog,
only more!

int clock; //global variables

module my_system (...);

always @(posedge clock)
case(instruction)
...
ROR: out = rotate(...);

endcase

enum {ADD, SUB, ROR} instruction;

struct {int word1, word2;} packet;

function int rotate (int data_in, n);
int temp;
for (int i=0; i<n; i++)
...

return(temp);
endfunction

endmodule

C language features
• Structures
• Globals
• ++ operator
• User-defined types
• and much more…

Standard Verilog HDL
• Familiar
• Concurrency
• Proven to work

SS, SystemVerilog, ModelSim, and You, April 2004
6

What’s Next

Objectives and caveats

Convenience enhancements to Verilog

RTL modeling enhancements to Verilog

Abstract modeling enhancements to Verilog

Verification enhancements to Verilog

ModelSim support for SystemVerilog

Suggestions on adopting SystemVerilog

Conclusions

4

SS, SystemVerilog, ModelSim, and You, April 2004
7

Enhanced Specification of
Time Units and Time Precision

In Verilog, time units are a module property
– Declared with the `timescale compiler directive

forever #5 clock = ~clock; 5 what?

forever #5ns clock = ~clock;

SystemVerilog adds:
– Time units can be specified as part of the time value

module my_chip (…);
timeunit 1ns;
timeprecision 10ps;
...

– Module time units and precision can be specified with keywords

SS, SystemVerilog, ModelSim, and You, April 2004
8

Enhanced Literal Value Assignments

In Verilog, the vector size must be hard coded in order to fill
all bits with 1

reg [127:0] data_bus;
data_bus = 128’hFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

reg [127:0] data_bus;
data_bus = ’1; //set all bits of data_bus to 1

SystemVerilog enhances assignments of a literal value
– All bits of a vector can be filled with a literal 1-bit value

’0 fills all bits on the left-hand side with 0
’1 fills all bits on the left-hand side with 1
’z fills all bits on the left-hand side with z
’x fills all bits on the left-hand side with x

5

SS, SystemVerilog, ModelSim, and You, April 2004
9

The SystemVerilog logic Data Type

In Verilog, the term “reg” confuses new users

– The name would seem to infer a hardware register
– In reality, reg is a general purpose variable that can

represent either combinational logic or sequential logic

reg [31:0] sum;
always @(a or b)

sum = a + b;

logic [31:0] sum;
always @(a or b)

sum = a + b;

SystemVerilog’s 4-state logic type is identical to a reg
– logic is a more intuitive name for new Verilog users

Verilog has other synonym keywords, such as wire and tri

SS, SystemVerilog, ModelSim, and You, April 2004
10

SystemVerilog Relaxes
Verilog Variable Semantic Rules

Verilog has strict rules on when to use a variable (eg. reg) and
when to use a net (e.g. wire)
– Context dependent
– A variable cannot be “driven” by a continuous

assignment or an output port

SystemVerilog allows variables to be used in the same places a
net can be used
– Limited to a single driver type (procedural, continuous or

output of a module/primitive instance
– The 1-driver limit prevents inadvertent shared variable

behavior where wired-logic resolution is needed

6

SS, SystemVerilog, ModelSim, and You, April 2004
11

An Example of Using Variables
With SystemVerilog’s Relaxed Rules

The same data type can be used for the entire model
– With the restriction that all inputs have a single driver

The restriction of a single driver can
prevent unintentional design errors!

module compare (output logic lt, eq, gt,
input logic [63:0] a, b);

always @(a or b)
if (a < b) lt = 1'b1; //procedural assignments
else lt = 1'b0;

assign gt = (a > b); //continuous assignments

comparator u1 (eq, a, b); //module instance

endmodule

SS, SystemVerilog, ModelSim, and You, April 2004
12

Relaxed Rules for
Passing Values Through Module Ports
Verilog restricts the data types that
can be connected to module ports
– Only net types on the receiving side
– Nets, regs or integers on the driving side
– Choosing the correct type frustrates Verilog modelers

SystemVerilog removes all restrictions on port connections
– Any data type is allowed on either side of the port
– Read numbers can be passed through ports
– Arrays can be passed through ports
– Structures can be passed through ports

7

SS, SystemVerilog, ModelSim, and You, April 2004
13

Module Instance
Port Connection Shortcuts

Verilog module instances can use port-name connections
– Must name both the port and the net connected to it

module dff (output q, qb,
input clk, d, rst, pre);

...
endmodulemodule chip (output [3:0] q,

input [3:0] d, input clk, rst, pre);

dff dff1 (.clk(clk), .rst(rst), .pre(pre), .d(d[0]), .q(q[0]));

can be verbose and redundant

dff dff1 (.clk, .rst, .pre, .d(d[0]), .q(q[0]));

SystemVerilog adds .name and .* shortcuts
– .name connects a port to a net of the same name

dff dff1 (.*, .q(q[0]), .d(d[0]));

– .* automatically connects all ports and nets that have the
same name

SS, SystemVerilog, ModelSim, and You, April 2004
14

Task/Function Arguments:
Passing By Name

In Verilog:
– Values are passed to tasks and functions by position

always @(posedge clock)
result = subtractor(stack, data_bus);

function integer subtractor(input integer a, b);
subtractor = a - b;

endfunction

How can I know if stack and data_bus are in the right order?

always @(posedge clock)
result = subtractor(.b(stack), .a(data_bus));

function int subtractor(int a, b);
return(a - b);

endfunction

Uses same syntax as named
module port connections

In SystemVerilog
– Values can be passed using the formal argument name

.name and .* connections can also be used

8

SS, SystemVerilog, ModelSim, and You, April 2004
15

Block Names and Statement Labels

Verilog allows a statement group to have a name
– Identifies all statements within the block
– Creates a new level of model hierarchy

begin: block1 ... end

shifter: for (i=15; i>0; i--)

– Specific statements can be given a “label”
Identifies a single statement
Can aid in debugging, coverage reporting, etc.

begin: block2 ... end: block2

SystemVerilog adds:
– A name can be specified after the end keyword

Documents which statement group is being ended

SS, SystemVerilog, ModelSim, and You, April 2004
16

Named End Statements

SystemVerilog also extends to ability to specify an ending
name with endmodule, endinterface, endprimitive,
endprogram, endtask, endfunction, endclass, endproperty,
and endsequence
– The ending name must match the name used with the

corresponding beginning of the code block

module my_chip (...);
...
task get_data (...)

...
endtask: get_data

endmodule: my_chip

Specifying ending names helps to make
large blocks of code more readable, but
does not affect functionality in any way

9

SS, SystemVerilog, ModelSim, and You, April 2004
17

What’s Next

Objectives and caveats

Convenience enhancements to Verilog

RTL modeling enhancements to Verilog

Abstract modeling enhancements to Verilog

Verification enhancements to Verilog

ModelSim support for SystemVerilog

Suggestions on adopting SystemVerilog

Conclusions

SS, SystemVerilog, ModelSim, and You, April 2004
18

Hardware Specific Procedural Blocks

The Verilog always procedural block is general purpose block
– Used to model combinational, latched, and sequential logic
– Software tools must “infer” (guess) what type of hardware an

engineer intended based on procedure content and context

Tools can know the designer’s intent, and verify that
the code models combinational behavior

always_comb
if (!mode)

y = a + b;
else

y = a - b;

no sensitivity list

contents must follow synthesis
requirements for combinational logic

SystemVerilog adds special hardware-oriented procedures:
always_ff, always_comb, and always_latch
– Simulation, synthesis and formal tools to use same rules
– Tools can check that designer’s intent has been modeled

10

SS, SystemVerilog, ModelSim, and You, April 2004
19

Unique and Priority Decisions

Verilog defines that if...else...if decisions and case
statements execute with priority encoding...
– In simulation, only the first matching branch is executed
– Synthesis will infer parallel execution based on context

Parallel evaluation after synthesis may causes a mismatch in
pre-synthesis and post-synthesis simulation results

unique case (state)
WAIT: ...
LOAD: ...
READY: ...

endcase

• Can be evaluated in parallel
• Will get an error if no branch is true

SystemVerilog adds unique and priority decision modifiers
– Priority-encoded or parallel evaluation can be explicitly defined

for both simulation and synthesis
– Software tools can warn if case or if...else decisions do not

match the behavior specified

SS, SystemVerilog, ModelSim, and You, April 2004
20

New Operators

Verilog does not have increment and decrement operators

for (i = 0; i <= 255; i = i + 1)
...

Hooray!
for (i = 0; i <= 255; i++)

...

SystemVerilog adds:
– ++ and -- increment and decrement operators
– +=, -=, *=, /=, %=, &=, ^=, |=, <<=, >>=, <<<=, >>>=

assignment operators

11

SS, SystemVerilog, ModelSim, and You, April 2004
21

The 2-state bit Data Type

Verilog uses 4-state logic
– Can be overhead to simulation performance
– Most hardware can be modeled with 2-state logic

Some simulator’s “fake” 2-state with compilers
– Not portable to other tools (not a standard)
– Can have side affects if part of the design (or test bench)

requires 3-state or 4-state logic
The SystemVerilog 2-state bit type
– Allows mixing 2-state and 4-state in the same design
– Will work the same on all SystemVerilog simulators

bit [31:0] sum;
always @(a or b)

sum = a + b;

SS, SystemVerilog, ModelSim, and You, April 2004
22

Enumerated Types

With Verilog, constants must be used to give names to values
The variable traffic_light could be assigned
values other than red, green or yellow

reg [2:0] traffic_light;

parameter red = 0;
parameter green = 1;
parameter yellow = 2;

always @(posedge clock)
if (traffic_light == red)

...

enum {red, green, yellow} traffic_light;

always @(posedge clock)
if (traffic_light == red)

...

Simplifies declaration of named values

SystemVerilog adds enumerated types, using enum, as in C

Limits the legal values of a variable

12

SS, SystemVerilog, ModelSim, and You, April 2004
23

User-defined Types

Verilog does not have user-defined data types

SystemVerilog adds user-defined types
– Uses the typedef keyword, as in C

typedef enum {FALSE, TRUE} boolean;

boolean ready; //variable “ready” can be FALSE or TRUE

enum {WAIT, LOAD, READY} states_t;

states_t state, next_state;

SS, SystemVerilog, ModelSim, and You, April 2004
24

For Loop Variables

In Verilog, the variable used to control a for loop must be
declared prior to the loop

integer i;
initial begin

for (i=0; i<= 255; i++)
...

i must be declared outside the loop

initial
begin

for (int i=0; i<= 255; i++)
...

i can be declared within the loop

SystemVerilog allows the declaration of the for loop variable
within the for loop itself

– Makes the loop variable local to the loop
– Prevents conflicts between multiple for loops

13

SS, SystemVerilog, ModelSim, and You, April 2004
25

What’s Next

Objectives and caveats

Convenience enhancements to Verilog

RTL modeling enhancements to Verilog

Abstract modeling enhancements to Verilog

Verification enhancements to Verilog

ModelSim support for SystemVerilog

Suggestions on adopting SystemVerilog

Conclusions

SS, SystemVerilog, ModelSim, and You, April 2004
26

Interfaces

Verilog connects models using detailed module ports

Connections must be modeled
at implementation level

Interconnection details must
be duplicated in every module

White Board Verilog Models

SystemVerilog ModelsWhite Board
Connections between

modules are bundled together

Modules use simple ports, an
interface bundle

SystemVerilog adds interfaces

14

SS, SystemVerilog, ModelSim, and You, April 2004
27

Interfaces Simplify Module
Interconnections

RAM

chip_bus

clk

clk clk
data data

address address
request request

grant grant
ready ready

CPU
interface chip_bus (input bit clk);

bit request, grant, ready;
bit [47:0] address;
bit [63:0] data;

endinterface

module RAM(chip_bus pins);
...

endmodule

module CPU (chip_bus io);
...

endmodule Modules do not duplicate
connection detail

module top;
bit clk = 0;
chip_bus a(clk); //instantiate the interface

RAM mem(a); //connect interface to module instance
CPU cpu(a); //connect interface to module instance

endmodule

Netlists do not duplicate connection detail

Connection details are in
in the interface

SS, SystemVerilog, ModelSim, and You, April 2004
28

Abstract Data Types

Verilog has hardware-centric data types
– Intended to represent real connections in a chip or system
– At the system and RTL level, models only need 2-state logic

Tri-state busses are the only place 4-state logic is needed

SystemVerilog adds several new data types
– C-like data types create a bridge between C and Verilog

byte — an 8-bit 2-state integer
shortint — a 16-bit 2-state integer, similar to a C short
int — a 32-bit 2-state integer, similar to a C int
longint — a 64-bit 2-state integer, similar to a C longlong
shortreal — a 32-bit single-precision floating point, a C float
void — no value (used for function returns)

15

SS, SystemVerilog, ModelSim, and You, April 2004
29

Structures

SystemVerilog adds C-like structures to Verilog

A structure is a collection of variables that can be different types and sizes

struct {
real r0, r1;
int i0, i1;
bit [15:0] opcode;

} instruction_word;
...
instruction_word.opcode = 16’hF01E;

The structure declaration is the same as in C

– Can be used to bundle several variables into one object
– Can assign to individual signals within the structure
– Can assign to the structure as a whole
– Can pass structures through ports and

to tasks or functions

SS, SystemVerilog, ModelSim, and You, April 2004
30

Unions

A union is a single element that allows the storage of different
data types in the same space
– Can be used to define storage before the type of the value to be

stored is known
– Can be used to define storage where the type of the value stored

may change during run time

union {
int i;
real r;

} data;
...
data.i = 5;
$display(“data is %d”, data.i);
data.r = 2.01;
$display(“now data is %f”, data.r);

“data” can only store one value, but
the type of the value can be int or real

16

SS, SystemVerilog, ModelSim, and You, April 2004
31

Unpacked Arrays

An “unpacked array” is an array of nets or variables
– The signal can be any data type
– The array can have any number of dimensions

wire n [0:1023]; a 1-dimensional “unpacked array” of 1024 1-bit nets

real r [0:1023]; a 1-dimensional “unpacked array” of 1024 real variables

int a [0:7][0:7][0:7]; a 3-dimensional “unpacked array” of 32-bit int variables

Unpacked array dimensions come after the array name (as in Verilog)

In Verilog:
– Only one element within an array can be accessed at a time

SystemVerilog adds:
– The entire array can be referenced (my_array = your_array)
– Slices of arrays can be accessed

SS, SystemVerilog, ModelSim, and You, April 2004
32

Initializing and Assigning to
Unpacked Arrays

Unpacked arrays can be assigned using a list of values in { }
braces for each array dimension (similar to C)

int d [0:1][0:3] = { {7,3,0,5},{2,0,1,6} };

The { } braces are the C array initialize tokens,
not the Verilog concatenate operator!

Must have a set of braces for each array dimension

d[0][0] is initialized to 7
d[0][1] is initialized to 3
d[0][2] is initialized to 0
d[0][3] is initialized to 5
d[1][0] is initialized to 2
d[1][1] is initialized to 0
d[1][2] is initialized to 1
d[1][3] is initialized to 6

int d [0:1][0:3] = { 2{7,3,0,5} }; d[0][0] is initialized to 7
d[0][1] is initialized to 3
d[0][2] is initialized to 0
d[0][3] is initialized to 5
d[1][0] is initialized to 7
d[1][1] is initialized to 3
d[1][2] is initialized to 0
d[1][3] is initialized to 5

A replicate operator can be used to full unpacked arrays

int d [0:1][0:3] = { default:’1 };

A default assignment can also be used

17

SS, SystemVerilog, ModelSim, and You, April 2004
33

Jump Statements

Verilog uses the disable statement as a go-to
– Causes a named group of statements to jump to the end

SystemVerilog adds C language jump statements to Verilog
– break — works like the C break
– continue — works like the C contunue
– return(<value>) — return from a non-void function
– return — return from a task or void function

task send_packet(...);
if (^data == 1’bx) begin

$display(“Error...”);
return; //abort task

end
...

endtask

function real absolute(input real a);
if (a >= 0.0) return(a);
else return(-a);

endfunction

The return statement allows terminating
a task or function before reaching the end

SS, SystemVerilog, ModelSim, and You, April 2004
34

Task/Function Arguments:
Passing By Reference

In Verilog:
– Inputs are copied into tasks and functions
– Outputs are copied out of tasks

always @(posedge clock)
result = subtractor(data_bus, stack);

function integer subtractor(input integer a, b);
...

always @(posedge clock)
result = subtractor(data_bus, stack);

function int subtractor(int a, ref b);
...

The function receives a pointer
to “stack” in the calling scope
(note: the C “&” is not used)

In SystemVerilog:
– Task/function arguments can “reference” to calling argument

Uses the keyword ref instead of input, output or inout

18

SS, SystemVerilog, ModelSim, and You, April 2004
35

What’s Next

Objectives and caveats

Convenience enhancements to Verilog

RTL modeling enhancements to Verilog

Abstract modeling enhancements to Verilog

Verification enhancements to Verilog

ModelSim support for SystemVerilog

Suggestions on adopting SystemVerilog

Conclusions

SS, SystemVerilog, ModelSim, and You, April 2004
36

SystemVerilog Assertions

SystemVerilog adds assertion syntax and semantics
– Immediate assertions test for a condition at the current time

always @(state)
assert (reset && (state != RST)) else $fatal);

generate a fatal error
if reset is true

and not in the reset state

0 1 2 3 4 5

req
ack

sequence req_ack;
@(posedge clk) req ##[1:3] $rose(ack);
endsequence

assert property (req_ack);
an event sequence is described
using a declarative statement

– Concurrent assertions test for a sequence of events spread over
time

19

SS, SystemVerilog, ModelSim, and You, April 2004
37

SystemVerilog Assertion Sequences

SystemVerilog can specify very complex event sequences
using a simple and concise syntax
– Unifies PSL and Verilog syntax to express sequences
– Adds Verilog-like simulation timing and assertion control
– Can specify:

Advancing one or more clock cycles, using ##
Boolean expressions, using special operators

– and, intersect, or, first_match, throughout, within,
$rose, $fell, $stable

Repetition of sequences
Implication of sequences

SS, SystemVerilog, ModelSim, and You, April 2004
38

Special Test Bench
Program Blocks

Verilog uses modules to model the test bench
– Modules are intended to model hardware
– No test semantics to avoid race conditions with the design

SystemVerilog adds a special program block for testing
– Events are synchronized to hardware events to avoid races
program test (input clk, input [15:0] addr, inout [7:0] data);

initial begin
@(negedge clk) data = 8’hC4;

address = 16’h0004;
@(posedge clk) verify_results;

end
task verify_results;

...
endtask

endprogram

• No race conditions between program
block and design blocks

• In a module, this example could have
race conditions with the design, if the
design used the same posedge of clock.

20

SS, SystemVerilog, ModelSim, and You, April 2004
39

Object Oriented Verification

SystemVerilog adds “classes” to the Verilog language
– Allows Object Oriented Programming techniques

Primary intent is for use in verification
Can be used in abstract h/w models

– Can contain
“properties” (data declarations)
“methods” (tasks and functions)

– Similar to C++
Inheritance
Public, local or private
encapsulation
New objects created and
initialized using new
Polymorphism

class Packet ;
bit [3:0] command;
bit [39:0] address;
bit [4:0] master_id;
integer time_requested;
integer time_issued;
integer status;

task clean();
command = 4’h0;
address = 40’h0;
master_id = 5’b0;

endtask

task issue_request(int delay);
...

endtask
endclass

SS, SystemVerilog, ModelSim, and You, April 2004
40

Dynamic Arrays
and Associative Arrays

Verilog has static arrays
– The size of the array is fixed at

compile time and cannot change
reg [31:0] mem [0:1024];

integer table [0:255];

logic [31:0] mem [];

int table [];

SystemVerilog adds:
– Dynamic arrays

The size of the array is left open-ended
Built-in class methods are used to
change the array size during simulation

typedef enum {A, B, C, D} state;

int table [state];

data = table[A];

– Associative arrays
The index into the array can
be non-sequential values
Built-in class methods are
used to access the array

21

SS, SystemVerilog, ModelSim, and You, April 2004
41

Enhanced Synchronization:
Mailboxes and Semaphores

SystemVerilog includes built-in class definitions to
synchronize verification activity
– Semaphores

Represents a bucket with a fixed number of keys
Built-in class methods used to check keys in and out
Process can check out one or more keys, and return them later
If not enough keys are available, the process execution stops and waits for
keys before continuing (gives mutually exclusive control)

– Mailboxes
Represents a FIFO to exchange messages between processes
Built-in methods allow adding a message or retrieving a message
If no message is available, the process can either wait until a message is
added, or continue and check again later

SS, SystemVerilog, ModelSim, and You, April 2004
42

Constrained Random Values

Verilog’s $random returns a 32-bit signed random number
– No way to constrain the random values returned

SystemVerilog adds:
– rand built-in class for creating distributed random numbers
– randc built-in class for creating cyclic random numbers
– SystemVerilog random values can be constrained

class Bus;
randc bit[15:0] addr;
rand bit[31:0] data;

// constrain addr to be word aligned
constraint word_align {addr[1:0] == 2’b0;}

endclass

22

SS, SystemVerilog, ModelSim, and You, April 2004
43

What’s Next

Objectives and caveats

Convenience enhancements to Verilog

RTL modeling enhancements to Verilog

Abstract modeling enhancements to Verilog

Verification enhancements to Verilog

ModelSim support for SystemVerilog

Suggestions on adopting SystemVerilog

Conclusions

SS, SystemVerilog, ModelSim, and You, April 2004
44

SystemVerilog Roadmap

The SystemVerilog standard was developed by Accellera
– June 2001: work began on specification of SystemVerilog
– May 2002: SystemVerilog 3.0 released (modeling extensions)
– May 2003: SystemVerilog 3.1 released (verification extensions)
– March 2004: SystemVerilog 3.1a released (more verification)
– June 2004: SystemVerilog to be donated to IEEE 1364 Verilog

To be incorporation into next IEEE 1364 standard (2005 or 2006)

Accellera is a consortium of EDA tool vendors and users
– A think tank for developing new EDA standards
– Sponsors IEEE standards groups for Verilog, VHDL, SDF, ...
– Mentor Graphics actively participated in the Accellera

SystemVerilog standards committees

23

SS, SystemVerilog, ModelSim, and You, April 2004
45

ModelSim and SystemVerilog

The current Mentor ModelSim simulator (5.8b) supports
many of the SystemVerilog constructs presented in this paper
– Next version will support most of the constructs presented

Verilog-1995
Verilog-2001

SystemVerilog

globals
enum
typedef
structures
unions
casting
const

break
continue
return
do–while
++ -- += -= *= /=
>>= <<= >>>= <<<=
&= |= ^= %=

int
shortint
longint
byte
shortreal
void
alias

interfaces
nested hierarchy
unrestricted ports
automatic port connect
enhanced literals
time values and units
specialized procedures

packages
2-state modeling
packed arrays
array assignments
queues
unique/priority case/if
compilation unit space

de
si

gn

assertions
test program blocks
clocking domains
process control

mailboxes
semaphores
constrained random values
direct C function calls

classes
inheritance
strings

dynamic arrays
associative arrays
references

ve
rif

ic
at

io
n

SS, SystemVerilog, ModelSim, and You, April 2004
46

ModelSim and SystemVerilog

All versions of ModelSim (PE, LE, SE) support the same
SystemVerilog constructs
No special licenses are needed — SystemVerilog is simply the
next generation of the Verilog language
– A -sv invocation option is required

Enables support for the new keywords added with SystemVerilog

You can start using
SystemVerilog today!

24

SS, SystemVerilog, ModelSim, and You, April 2004
47

What’s Next

Objectives and caveats

Convenience enhancements to Verilog

RTL modeling enhancements to Verilog

Abstract modeling enhancements to Verilog

Verification enhancements to Verilog

ModelSim support for SystemVerilog

Suggestions on adopting SystemVerilog

Conclusions

SS, SystemVerilog, ModelSim, and You, April 2004
48

Categorizing SystemVerilog Extensions

This paper has divided SystemVerilog into major categories
– Convenience extensions to the Verilog HDL

Makes Verilog easier to use
– RTL modeling extensions to the Verilog HDL

Ensures simulation/synthesis compatibility
Built-in checking that models match intent

– Abstract modeling extensions to the Verilog HDL
Allows modeling more complex logic in concise, readable code
Synthesizable

– Verification extensions to the Verilog HDL
Allows writing state-of-the-art verification programs
Object oriented test programs
Directed testing and constrained random testing

25

SS, SystemVerilog, ModelSim, and You, April 2004
49

Adopting SystemVerilog

A good way to get started with SystemVerilog is to...
Begin using the convenience options right away

Makes Verilog easier to use
Next, start using the RTL extensions

Take advantage of built-in checking to ensure models match intent
Begin using assertions as soon as possible

Key methodology for verifying any size design!
Adopt abstract modeling extensions as needed

Mostly benefits large multi-million gate designs
May require learning new modeling styles and coding tricks
May have to wait for EDA tools to implement some extensions

Plan to adopt advanced verification late 2004 or early 2005
Requires adopting object-oriented methodologies
Not yet implemented in most EDA tools

SS, SystemVerilog, ModelSim, and You, April 2004
50

What’s Next

Objectives and caveats

Convenience enhancements to Verilog

RTL modeling enhancements to Verilog

Abstract modeling enhancements to Verilog

Verification enhancements to Verilog

ModelSim support for SystemVerilog

Suggestions on adopting SystemVerilog

Conclusions

26

SS, SystemVerilog, ModelSim, and You, April 2004
51

SystemVerilog Extends Verilog

SystemVerilog
– Is based on the IEEE 1364-2001 standard
– Adds extensions to make Verilog easier to use
– Adds extensions to enforce synthesis compatibility
– Adds extensions to model more logic in fewer lines of code
– Adds advanced, object-oriented verification capability

SystemVerilog is next generation of IEEE Verilog standard
Major EDA companies have already implemented many of
the SystemVerilog extensions
– Current Mentor ModelSim simulator (5.8b) supports some

SystemVerilog extensions
– Next release will support much of SystemVerilog

SS, SystemVerilog, ModelSim, and You, April 2004
52

SystemVerilog and You

SystemVerilog makes Verilog easier, safer and more powerful
There are many SystemVerilog extensions you can and should
take advantage of today!

Verilog-1995
Verilog-2001

SystemVerilog

globals
enum
typedef
structures
unions
casting
const

break
continue
return
do–while
++ -- += -= *= /=
>>= <<= >>>= <<<=
&= |= ^= %=

int
shortint
longint
byte
shortreal
void
alias

interfaces
nested hierarchy
unrestricted ports
automatic port connect
enhanced literals
time values and units
specialized procedures

packages
2-state modeling
packed arrays
array assignments
queues
unique/priority case/if
compilation unit space

de
si

gn

assertions
test program blocks
clocking domains
process control

mailboxes
semaphores
constrained random values
direct C function calls

classes
inheritance
strings

dynamic arrays
associative arrays
references

ve
rif

ic
at

io
n

27

SS, SystemVerilog, ModelSim, and You, April 2004
53

Some Recommended References

SystemVerilog 3.1a Language Reference Manual
– 2004, published by Accellera, www.accellera.org

The 1364-2001 Verilog HDL Language Reference Manual
– 2001, published by the IEEE, www.ieee.org

SystemVerilog For Design
– Stuart Sutherland, Peter Flake, Simon Davidmann & Phil

Moorby, 2004, Kluwer, ISBN: 0-4020-7530-8

Verilog-2001: A Guide to the New Features in the Verilog
Hardware Description Language
– Stuart Sutherland, 2001, Kluwer, ISBN: 0-7923-7568-8

SS, SystemVerilog, ModelSim, and You, April 2004
54

About the Presenter...

Stuart Sutherland
– Verilog design consultant, specializing in Verilog training

Hardware design engineer with a Computer Science degree
Deeply involved with Verilog since 1988

– Member of IEEE 1364 Verilog standards group since 1993
Co-chair of Verilog PLI task force
Technical editor of PLI sections of the IEEE 1364 Verilog
Language Reference Manual

– Member of the Accellera committee defining SystemVerilog
Involved since the inception of the SystemVerilog standardization
Technical editor of SystemVerilog Reference Manual

