
SystemVerilog, ModelSim, and You
(Is there anything in SystemVerilog useful in your work?)

Stuart Sutherland

Sutherland HDL, Inc., Portland, Oregon
www.sutherland-hdl.com
Abstract
SystemVerilog is not a new Hardware Description Language.
SystemVerilog is a rich set of extensions to the existing Verilog
HDL. The name “SystemVerilog” is somewhat of a misnomer.
While it is true that one of the goals of SystemVerilog is to aid in
modeling and verifying system-level designs, SystemVerilog
provides extensions to Verilog that every engineer can and
should take advantage of.
The SystemVerilog extensions to Verilog can be categorized as:
• Convenience extensions that make Verilog easier to use.
• Modeling extensions that make RTL models more accurate and

consistent for both simulation and synthesis.
• Extensions for high-level behavioral modeling, which allow

representing more functionality with fewer lines of code.
• Extensions for race-free, high-level verification programs.
This paper describes several extensions in each of these
categories. A score card is then given to show which of these
extensions work in the current release of the Mentor Graphics
ModelSim simulator (version 5.8b). Insights on when ModelSim
might support other features of SystemVerilog are also presented.
Finally, the paper makes suggestions on how engineers can begin
utilizing and benefitting from the SystemVerilog extensions to
Verilog immediately.
The SystemVerilog extensions to Verilog are legion, and space
within this paper does not permit a comprehensive treatise of all
of these extensions. The SystemVerilog Language Reference
Manual (LRM) [1] is the best source for a complete list of all the
SystemVerilog extensions to the Verilog language.

1 Convenience extensions
The extensions listed in this section of the paper do not add
significant new capabilities to the Verilog language, but do help
make Verilog easier to use.

1.1 Time unit and precision
In Verilog, time values are a number, with no time units.
forever #5 clock = ~clock;

The time units and precision (where precision is the maximum
number of decimal places used in time values) are properties of a
software tool, set by the compiler directive ‘timescale. There

is an inherent danger with compiler directives, however, because
they are dependent on source code order. This can potentially
cause different simulation runs to have different results.
SystemVerilog adds two extensions to specify time units. First,
time values can have an explicit unit specified. The unit is one of
s, ms, ns, ps or fs, representing seconds down to femtoseconds.
forever #5ns clock = ~clock;

Second, SystemVerilog allows the time unit and precision to be
specified within a module, making time units and precision part
of the model. As part of the module, source code order
dependencies are eliminated.
module chip (...);

timeunit 1ns;
timeprecision 10ps;
...

1.2 Filling vectors
With Verilog, it is easy to fill a vector of any width with all zeros,
all Zs, or all Xs. However, Verilog does not have a simple way to
fill a vector of any width with all ones. SystemVerilog adds a
convenient shortcut to fill all the bits of a vector with the same
value. The simple syntax is ’0, ’1, ’z or ’x.

bit [63:0] data;
data = ’1; //set all bits of data to 1

1.3 New logic data type
SystemVerilog adds a new data type, logic, which is a synonym
for the Verilog reg data type. The logic type solves a
terminology problem that often confuses new Verilog users. The
reg keyword would seem to imply “register”, which then seems
to imply that wherever the reg type is used, a hardware register
is required. With experience, engineers learn that this implication
is false. The reg data type is simply a programming variable. It
is the context in which a variable is used that determines if a
hardware register is required. The logic data type is the same as
the reg type, but does not have a misleading name.

1.4 Relaxed rules for using variables
Verilog only permits variables to be used on the left-hand side of
procedural assignments. It is illegal to use a variable on the left-
hand side of continuous assignments or on the receiving side of a
1

module port. These contexts require a net data type, such as
wire. This restriction on the use of variables can be a source of
frustration. When creating a module, a designer must first
determine how a signal will receive its values, in order to know
what data type to use. If the way functionality is modeled
changes, it may be necessary to change data type declarations.
SystemVerilog relaxes the rules on the usage of variables. A
variable can be:
a) assigned values by any number of procedural assignment

statements, or...
b) assigned a value by a single continuous assignment statement,

or...
c) connected to a the output of a single primitive, or...
d) connected to the receiving side of a single module port.
With these relaxed rules, most signals can be declared as a
variable, without concern for how the variable will receive its
values. The only time a net data type is required is when a signal
will have multiple drivers, such as on a bidirectional port.
The SystemVerilog rules for variables require that a variable can
only have a single source for its value (from the list above). If a
variable were to unintentionally receive values from a second
source, an error would be reported. This can prevent
unintentional multi-driver logic, which Verilog net types will
allow.

1.5 Relaxed rules for passing values through ports
Verilog restricts the data types that can be passed through module
ports to be only net types and the variable types reg, integer,
and time. SystemVerilog removes all restrictions on connections
to module ports. Any data type can be passed through ports,
including reals, arrays, and structures (see 3.4).
module chip(input real a, b,

output real result);

1.6 Simplified module instantiations
Verilog provides two styles for instantiating modules. The first
style connects signals to the module instance, using the order of
the modules port declarations.
module chip;

wire q;
reg [3:0] d;
reg clk, rst;

dff i1 (q, , clk, d[0], rst);
...

endmodule

module dff (output q, qb,
input clk, d, rst);

...
endmodule

The second style of connecting signals to a module instance uses
the names of module ports.
dff i1 (.d(d[0]), .q(q), .clk(clk), .rst(rst));

Both styles have advantages and disadvantages. The port-order
style is concise, but it is easy to inadvertently list signals in the

wrong order. The named port connection style can eliminate
inadvertent connection errors, but is verbose, and requires
duplicating names when the signal and port names are the same.
SystemVerilog simplifies named port connection in two ways.
First, if a signal name and port name are the same, then only the
port name needs to be listed (called dot-name port connections).
dff i1 (.d(d[0]), .q, .clk, .rst);

Second, SystemVerilog adds a .* wild card port connection
syntax. With dot-star, all ports and signals of the same name are
automatically connected together.
dff i1 (.d(d[0]), .qb(), .*);

1.7 Function argument passing by name
Verilog requires that when a task or function is called, arguments
must be passed in the order in which the formal arguments of the
task or function are defined. SystemVerilog enhances task/
function calls to allow values to be passed to a task or function in
any order, using the task/function argument names. The syntax is
the same as named module port connections.

1.8 Multiple statements in tasks and functions
Verilog requires that when there are two or more statements in a
task or function, the statements must be grouped within
begin...end keyword pairs. SystemVerilog simplifies tasks and
functions by allowing any number of statements without having
to specify begin...end keywords.

1.9 Function return values
Verilog has an unconventional mechanism for returning values
from functions — the return value is assigned to the name of the
function. SystemVerilog adds the C language return statement.
This allows function return values to be specified in a more
intuitive and self-documenting coding style.

1.10 Named block ends
In Verilog, blocks of code are grouped within begin...end
blocks. Often, several begin...end blocks are nested, making it
difficult to determine which begin belongs with which end.
Verilog allows a name to be added after a begin keyword, which
can help to document begin...end blocks.
SystemVerilog extends Verilog’s named blocks by allowing a
name to also be specified with the end keyword. The name with
end must match the name of its corresponding begin.
SystemVerilog also allows an optional name to be specified with
other ending keywords, such as endtask, endfunction and
endmodule.
module chip (...);

always @(posedge clk) begin: output_register
...
if (select) begin: muxed_inputs

...
end: muxed_inputs
...

end: output_register
endmodule: chip
2

2 RTL modeling extensions
SystemVerilog extends Verilog with several new constructs that
simplify modeling at the Register Transfer Level. Some
constructs help ensure that simulation and synthesis will interpret
RTL modes in the same way. Many of these extensions are
synthesizable using synthesis compilers available today.

2.1 New procedural blocks
Verilog uses the always procedural block to represent RTL
models of sequential logic, combinational logic and latched
logic. Synthesis and other software tools must infer the intent of
the always procedural block from the context of the statements
within the block. This inference can lead to mismatches in
simulation and synthesis results.
SystemVerilog adds new procedural blocks that explicitly show
the intent of the logic: always_ff, always_comb, and
always_latch. An example of using these blocks is:
always_comb begin
if (sel) y = a;
else y = b;

end

With the designer’s intent explicitly stated, software tools can
check that the procedural block functionality matches the intent.
Errors can be generated if the code does not match the intent.

2.2 Unique and priority decision statements
Verilog defines that if...else and case statements evaluate in
source code order. In hardware implementation, this would
require additional priority encoding logic. Verilog does not
require that a decision statement always execute a branch of
code. If no branch is executed, storage may be required, typically
in the form of latches. Synthesis compilers provide pragmas such
as full_case and parallel_case to help control how synthesis
handles decision statements, but these pragmas do not affect
simulation behavior, and do not require that software tools verify
that a decision statement meets the intent of the pragma.
SystemVerilog adds unique and priority keywords that
specify how both simulation and synthesis should interpret
decision statements. These modifiers also allow software tools to
check that a decision statement meets the designer’s intent, and
issue error messages if the intent is not met.
priority if (a[2:1]==0) y = in1; //a is 0 or 1

else if (a[2] == 0) y = in2; //a is 2 or 3
else y = in3; //a is any

// other value

unique case(a)
0, 1: y = in1;
2: y = in2;
4: y = in3;

endcase // unspecified values will be an error

When the priority decision modifier is specified, all tools
must maintain the decision order of the source code. In addition,
all tools must report an error if they detect that the decision was
evaluated and no branch was executed.
When the unique decision modifier is specified, tools can

optimize out the decision order. However, all tools are required to
report an error, should the tool determine that two code branches
could be true at the same time. In addition, all tools must report
an error if it is detected that the decision was evaluated and no
branch was executed.

2.3 2-state modeling
Verilog reg data types holds 4-state values (0, 1, Z and X). The Z
value represents high-impedance, and is generally only used to
represent tri-state logic. The X value is not a modeling value. It is
a simulation value indicating an unknown condition.
SystemVerilog adds a 2-state bit data type, that can be used in
place of the Verilog reg type. The bit type allows modeling at
the RTL level using just logic 0 and 1. With the exception of tri-
state outputs, synthesis compilers only use logic 0 and 1. Using
the bit data type can help ensure that simulation and synthesis
see the same logic values. The 4-state reg or logic types and
the 2-state bit type can be mixed in the same model, giving the
hardware designer complete control over what logic values can
exist in different parts of the design.

2.4 Enumerated types
In Verilog, all signals must be a net or variable data type, or
constant (such as parameter). Signals of these data types can
have any value within their legal range. Verilog does not provide
a way to limit the set of legal values for a variable.
SystemVerilog allows users to define enumerated types, using a
C-like syntax. An enumerated type has one of a set of named
values. These named values are the only legal values for that
enumerated variable.
enum {WAIT, LOAD, DONE} states;

2.5 User defined types
SystemVerilog extends Verilog with a method for users to define
new data types using typedef, similar to C. User-defined types
can then be used in declarations, the same as with any data type.
typedef int unsigned uint;
uint a, b;

2.6 Operators
Verilog does not have the C language ++, -- or assignment
operators. Without these operators, code is more verbose.
for (data = 0; data <= 255; data = data + 1)

SystemVerilog adds several new operators, including:
• ++ and -- increment and decrement operators
• +=, -=, *=, /=, %=, &=, ^=, |=, and other assignment operators
These operators simplify the coding of many types of operations.
For example,
for (data = 0; data <= 255; data++)

2.7 Enhanced for loops
Verilog for loops require a variable be declared prior to the loop,
for use as the loop control.
3

module chip (...);
integer i;
always @(posedge clock)

for (i=0, i < 127; i=i+1)
...

SystemVerilog enhances for loops to allow the loop control
variable to be declared as part of the loop. SystemVerilog also
allows the loop to contain multiple initial and step assignments.
for (int i=1, int cnt=0; i*cnt < 125; i++, cnt+=3)

...

3 High-level modeling extensions
A number of SystemVerilog extensions to the Verilog language
allow modeling more functionality with fewer lines of code.
These abstract modeling constructs enable representing very
large designs in a concise yet intuitive manner.

3.1 Packages and compilation units
Verilog does not have a mechanism to define a block of code,
such as a function, that can be shared by several modules.
SystemVerilog adds a concept of packages to Verilog.
Definitions of tasks, functions, user-defined types and shared
variables can be defined in a package. Part or all of a package can
then be imported into any number of modules. Packages also
provide a mechanism to overload Verilog operators, thereby
redefining the behavior of an operator for specific data types.
SystemVerilog also allows definitions such as user-defined types
to be defined outside of module boundaries. These external
definitions are then visible to all design blocks that are compiled
at the same time. Design blocks that are compiled at the same
time, along with any external definitions, make up a compilation
unit. A primary usage of external definitions is to allow user-
defined types to be passed through module ports.

3.2 Interfaces
Verilog connects one module to another module through module
ports. In order to begin writing a Verilog model, a detailed
knowledge of the design interconnection is required. In large
designs, it is common for several modules to have many of the
same ports, requiring redundant port definitions for each module.
Every module connected to a PCI bus, for example, must have
the same ports defined.

Figure 1: Verilog module interconnect

SystemVerilog interfaces provide a new, high level of abstraction
for module connections. An interface is defined independent
from modules, between the keywords interface and
endinterface. The interface encapsulates the interconnect
information between modules, as well as communication
information such as handshake sequences. Modules can use an
interface the same as if it were a single port. In its simplest form,
an interface can be considered a bundle of wires. Interfaces go
far beyond just representing bundles of interconnecting signals,
however. An interface can also include functionality that is
common to each module that uses the interface. In addition, an
interface can include built-in protocol checking.

Figure 2: SystemVerilog module interconnect

interface chip_bus;
bit clk, request, grant, ready;
bit [63:0] address, data;

 // communication rotocol can go here
endinterface

module CPU (chip_bus io);
...

endmodule

module RAM(chip_bus pins);
 ...
endmodule

module top;
chip_bus io(); //instantiate the interface
RAM mem(io); //connect interface to module instance
CPU cpu(io); //connect interface to module instance

endmodule

3.3 Abstract data types
Verilog provides hardware-centric net and variable data types.
These types represent 4-state logic values, and are used to model
and verify hardware behavior at a detailed level. Verilog’s net
data types also have multiple strength levels and resolution
functions for zero or multiple drivers of the net.
SystemVerilog adds several new data types to Verilog, which
allows modeling designs at more abstract levels.
• byte — an 8-bit 2-state signed variable.
• shortint — a 16-bit 2-state signed variable.
• int — a 32-bit 2-state signed variable, similar to the C int

module

endmodule

module

endmodule

– Many separate ports on each module
– Port declarations must be duplicated on each module
– Top-level netlist must duplicate all signal delcarations

module

endmodule

module

endmodule

– Single interface port on each module
– Interconnections are declared in one place, the interface
– Top-level netlist simply instantiates and connects the interface

endinterface

interface
4

data type, but is exactly 32 bits.
• longint — a 64-bit 2-state signed variable, similar to the C
long long type.

• shortreal — a 2-state single-precision floating point variable
that is the same as the C float type.

• void — represents no value, and can be specified as the return
value of a function, the same as in C.

These new data types make it possible to write Verilog models at
a higher level of abstraction, more like the C programming
language. Because these data types are closely aligned with the C
language, these data types also make it easy to integrate C and
SystemC models with Verilog models. Another SystemVerilog
extension to Verilog, the Direct Programming Interface, also
facilitates model integrations (see item 4.9).

3.4 Structures and unions
SystemVerilog adds structures to the Verilog language. Structures
allow multiple variables to be grouped together under a common
name. These variables can then be assigned independently, as
with any variable, or the entire group can be assigned in a single
statement. The syntax is similar to C.
struct {

logic [15:0] opcode;
logic [23:0] addr;

} IR;

Individual members of a structure are referenced using a period
between the variable name and the field name.
IR.opcode = 1; //set the opcode field in IR

All the members of a structure can also be assigned as a whole,
using a list of values, as in C.
IR = {5, 200};

Structures can be assigned to structures, simplifying transferring
one group of variables to another. Structures can also be passed
through module and to or from a function or task.

3.5 Unpacked arrays
Verilog data types can be declared as arrays with any number of
dimensions. Verilog restricts access to the elements of an array to
just one element at a time.
bit [7:0] r1 [1:256]; //256 8-bit variables
bit [7:0] r2 [1:256];

for (i=1; i<=256; i=i+1)
r2[i] = r1[i]; // copy 1 element at a time

SystemVerilog refers to a Verilog array as an unpacked array.
With SystemVerilog, any number of dimensions of an unpacked
array can be referenced at the same time. This allows all or part
of an array to be copied to another array.

r2 = r1; // copy the entire array

SystemVerilog also allows all elements of an unpacked array to
be set to a default value with a single assignment.

r1 = {default:8’hFF}; // initialize an array

3.6 Bottom testing loops
Verilog has the for, while and repeat loops, all of which test
to execute the loop at the beginning of the loop. SystemVerilog
adds a do...while loop, which tests the loop condition at the end
of executing code in the loop. In many cases, a bottom-testing
loop can reduce the number of lines of code required to model
functionality.

3.7 Jump statements
Verilog provides the ability to jump to the end of a named
statement group using the disable statement. One usage of
disable is to exit a loop early, but this coding style can be
awkward and non intuitive. SystemVerilog adds the C break and
continue keywords to exit loops early in a more natural way.
SystemVerilog also adds a return keyword, which can be used
to exit a task or function at any point. SystemVerilog does not
include the C goto statement.

3.8 Task and function argument pass by reference
Inputs to a task or function are copied in when the task or
function is called. Outputs are copied back out when the task or
function returns. With SystemVerilog, task or function arguments
can also be passed by reference, instead of by copy. Passing by
reference allows the task or function to work directly with the
value in the calling scope, instead of a local copy of the value. To
use pass by reference, the argument direction is declared as a
ref, instead of input, output or inout.

3.9 Redefinable data types
Verilog allows for parameterized modules, where constants such
as vector widths can be redefined for each instance of a module.
module register #(parameter size = 16)
 (output reg [size-1:0] q,
 input wire [size-1:0] d,
 input wire clock, reset);

SystemVerilog extends this parameterized module capability to
also allow for data types to be specified as parameters. This
allows for polymorphic modules, where the data types of a
module can be redefined for each instance of a module.
module multiplier #(parameter type VAR_TYPE = int)
 (input VAR_TYPE i, output VAR_TYPE o);

...
endmodule

module chip;
 ...
 multiplier #(.VAR_TYPE(real)) u1 (...);
 ...

4 Verification extensions
SystemVerilog adds many significant extensions to the Verilog
language to enable representing advanced test programs using
concise, object-oriented programming techniques. A few of these
verification extensions are listed in this section.
5

4.1 Assertions
SystemVerilog adds assertions to the Verilog standard. These
assertions constructs are aligned with the PSL assertion standard,
but are adapted to fit syntactically and semantically in the Verilog
language. There are two types of assertions, immediate and
concurrent. Immediate assertions execute as a programming
statement, similar to an if...else decision. These assertions are
simple to use, and can simplify the verification and debug of
even simple models. The following example asserts that at every
change of state, the state value only has a single bit set.
always @(posedge clock) begin
state <= next_state;
assert $onehot(state); else $error;

end

Concurrent assertions execute in parallel with the Verilog code,
and evaluate on clock cycles. A concurrent assertion is described
as a property. A property can span multiple clock cycles, which is
referred to as a sequence. SystemVerilog’s PSL-like assertions
can describe simple sequences and very complex sequences in
short, concise sequence expressions. The example below asserts
that when a request occurs, it must be followed by an
acknowledge within one to three clock cycles.
property req_ack;
@(posedge clk) req ##[1:3] ack;

endproperty

assert property (req_ack);

4.2 Test program blocks
In Verilog the testbench for a design must be modelled using
Verilog hardware modeling constructs. Since these constructs are
primarily intended to model hardware behavior, they have no
special semantics to indicate how test values should be applied to
the design. SystemVerilog adds a special type of code block,
declared between the keywords program and endprogram. The
program block has special semantics and syntax restrictions for
modeling a testbench. A program block:
• can contain a single initial block
• executes events in a “reactive phase” of the current simulation

time, appropriately synchronized to hardware simulation events
• can use a special $exit system task that will wait to exit

simulation until after all concurrent program blocks have
completed execution (unlike $finish, which exits simulation
immediately, even if parallel tests are still running).

4.3 Classes
SystemVerilog adds object oriented classes to the Verilog
language, similar to C++. A class can contain data declarations
(referred to as “properties”), plus tasks and functions for
operating on the data (referred to as “methods”). The properties
and methods together define the contents and capabilities of an
“object”. Classes can have inheritance and public or private
protection, as in C++. An example SystemVerilog object
definition is:
class Packet;
bit [3:0] command;

bit [39:0] address;
bit [4:0] master_id;

task clean();
command = 4’h0; address = 40’h0;
master_id = 5’b0;

endtask
endclass

An object is created from a class definition using a new
command, as in C++.

4.4 Dynamic arrays
SystemVerilog enhances Verilog arrays by adding dynamic
arrays and associative arrays. Dynamic arrays are one-
dimensional arrays where the size of the array can be changed
dynamically. Built-in methods provide a means to set and change
the size of dynamic arrays during run-time. Associative arrays
are one-dimensional sparse arrays that can be indexed using
values such as enumerated type names. Special built-in methods
for working with associative arrays are provided: exists(),
first(), last(), next(), prev(), and delete().

4.5 Process synchronization
SystemVerilog provides built-in class objects for representing
two common ways of synchronizing parallel activities within a
testbench: semaphores and mailboxes.
Semaphores serve as a bucket with a fixed number of “keys”.
Processes using semaphores must procure one or more keys from
the bucket before they can continue execution. When the process
completes, it returns its keys to the bucket. If no keys are
available, the process must wait until a sufficient number of keys
have been returned to the bucket by other processes. The built-in
semaphore class provides several built-in methods for working
with semaphores.
Mailboxes allow messages to be exchanged between processes.
A message can be added to the mailbox by one process, and
retrieved later by another process. If there is no message in the
mailbox when a process tries to retrieve one, the process can
either suspend execution and wait for a message, or continue and
check again at a later time. Mailboxes behave like FIFOs (First-
In, First-Out). The built-in mailbox class also includes several
built-in methods.

4.6 Constrained random value generation
The Verilog standard includes a very basic random number
function, called $random. This function, however, gives no
control over the values generated. SystemVerilog adds two
random number classes, rand and randc. These classes
provide methods to set seed values and to specify various
constraints on the random values that are generated.
The following example creates a class called Bus, that can
generate a random address and data value. A constraint on the
address ensures that the lower two bits of a random address value
will always be zero. The class is then used to generate 50 random
address/data value pairs, using the randomize() method,
which is part of the rand class.
6

class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;
constraint word_align { addr[1:0] == 2’b0; }

endclass

//Generate 50 random data values
Bus bus = new;
repeat(50) begin
int result = bus.randomize();

end

Using the rand and randc classes and methods, much more
elaborate random number generation is possible than what is
shown in the preceding simple example.

4.7 Enhanced fork—join
In the Verilog fork...join statement block, each statement is a
separate thread, that executes in parallel with other threads
within the block. The block itself does not complete until every
parallel thread has completed. Therefore, any statements
following a fork...join are blocked from execution until all the
forked parallel threads have completed execution.
SystemVerilog adds two new ways for forked process to join:
• join_none — statements that follow the fork...join_none

are not blocked from execution while the parallel threads are
executing. Each parallel thread is an independent process.

• join_any — statements which follow a fork...join_any are
blocked from execution until the first of any of the forked
threads has completed execution.

4.8 Final blocks
Verilog has initial blocks that begin execution at the very
beginning of simulation. SystemVerilog adds final blocks,
which execute at the very end of simulation, just before
simulation exits. Final blocks can be used in verification to print
simulation results, such as code coverage reports.

4.9 Direct Programming Interface
SystemVerilog provides a means for Verilog code to directly call
functions written in C, without having to use the Verilog
Programming Language Interface (PLI). Verilog and
SystemVerilog values can be passed directly to the C function,
and values can be directly received from the function. With the
DPI, Verilog code thinks it is calling a Verilog function, and is
unaware that it has actually called a C function. Conversely, a C
function is unaware that it was called from Verilog code.
The DPI provides a simple and intuitive mechanism to add C
libraries to Verilog (such as the C math library). The DPI also
makes it much easier to integrate SystemC models with Verilog
simulations.

5 Using SystemVerilog with ModelSim
Mentor Graphics is aggressively working to implement the
SystemVerilog extensions to Verilog in the ModelSim simulator.
Version 5.8b of ModelSim already supports a number of features,
and other features are being implemented. The next major release

of ModelSim is expected to support most of the constructs
covered in this paper.
Information on specific support for SystemVerilog is available in
each release of ModelSim can be found in the release notes for
each version. ModelSim users can receive notification as new
SystemVerilog features are implemented by signing up for the
ModelSim “Informant” E-newsletter.

6 Suggestions for adopting SystemVerilog
SystemVerilog provides a rich set of extensions to the Verilog
language. Learning to properly use all of these extensions will
take time and perhaps expert training. For novice Verilog users,
some of the more advanced extensions, such as object-oriented
testbench programming, may require a daunting learning curve.
Fortunately, SystemVerilog is based on the IEEE standard
Verilog. It is not necessary to learn an entirely new language in
order to begin taking advantage of the benefits of SystemVerilog.
The author suggests applying the following incremental
approach to adopting SystemVerilog extensions in current or next
design projects:
1) Begin using the extensions designated as convenience

extensions today. These extensions to Verilog are simple and
intuitive, and make it easier to code any size design. Indeed,
those new to Verilog will find that these convenience
extensions make it easier to learn Verilog.

2) If supported by your software tools (particularly synthesis
compilers), immediately begin using the RTL extensions to
Verilog. Extensions such as the new procedural blocks allow
modeling accurate functionality that will simulate and
synthesize in the same way. More importantly, many of these
RTL extensions allow software tools to better understand the
designer’s intent, and issue warnings or errors if the model
functionality does not match that intent.

3) As early as possible, begin adding basic assertions to designs.
While the full capabilities of SystemVerilog assertions is
complex, the basic usage and syntax of these assertions is
relatively straight forward. Even basic designs will benefit
from the run-time automatic checking of assertions. A good
place to add an assertion is anywhere a comment is used to
document the design intent or expectation.

4) As needed, add SystemVerilog verification constructs to the
testbench. Some types of designs will not benefit significantly
from these advanced verification capabilities. For more
complex designs, however, these extensions to Verilog will
both simplify the creation of test programs and the accuracy
of these programs.

The table on the following page is provided as an aid in the
decision process on adopting SystemVerilog. The table lists the
SystemVerilog extensions to Verilog that are presented in this
paper. This can be used as a check list for which constructs could
be beneficial in current or planned design projects.
(Note: This table only lists the SystemVerilog extensions to
Verilog included in this paper. There are many additional
extensions that were not covered. Refer to the SystemVerilog
7

LRM [1] for a full description of all SystemVerilog extensions to
Verilog.)

7 Other EDA companies and SystemVerilog
This paper is not a competitive analysis of EDA products.
However, when adopting new language features, it is important
to know if these features are portable across a variety of EDA
tools. For the objectives of this paper on using ModelSim with
the SystemVerilog extensions to Verilog, it is sufficient to state
that all major and many minor EDA companies either have
implemented, or are rapidly implementing, SystemVerilog
constructs in their existing Verilog products. Many
SystemVerilog extensions to Verilog can be used with a variety
of EDA tools in currently shipping versions of the products. This
includes the key enabling tools of simulation and synthesis.

8 Conclusion
SystemVerilog provides a major set of extensions to the Verilog-
2001 standard. These extensions make Verilog:
• easier to use
• more accurate for RTL simulation and synthesis
• more efficient for modeling at high levels of abstraction
• easier to verify large designs with concise, accurate test

benches.
Mentor Graphics has already implemented many of these
extensions to Verilog in the current release of the ModelSim
simulator. Other EDA companies have implemented—or are
currently implementing—SystemVerilog extensions in synthesis
compilers, lint checkers, formal tools, hardware accelerators, and
other electronic design tools. This broad range of industry
support for SystemVerilog means that you can begin using these
great extensions to Verilog today!

9 References
[1] SystemVerilog 3.1a: Accellera’s Extensions to Verilog, Accellera,

Napa, CA, 2003. Available in PDF form at www.systemverilog.com

[2] IEEE Std. 1364-2001 standard for the Verilog Hardware Description
Language, IEEE, Pascataway, NJ, 2001. ISBN: 0-7381-2827-9
(printed), 0-7381-2827-9 (PDF).

[3] SystemVerilog for Design: A Guide to Using SystemVerilog for
Hardware Design and Modeling, by Stuart Sutherland, Simon
Davidmann and Peter Flake. Kluwer Academic Publishers, Boston,
MA, 2004, ISBN: 0-4020-7530-8.

[4] Verilog 2001: A Guide to the new Verilog Standard, by Stuart Suth-
erland. Kluwer Academic Publishers, 2001, ISBN: 0-7923-7568-8.

10 About the author
Mr. Stuart Sutherland is a member of the Accellera technical
subcommittee that defined SystemVerilog, and is the technical
editor of the SystemVerilog Language Reference Manual. He is
also a member of the IEEE 1364 Verilog standards group, where
he serves as co-chair of the PLI task force. Mr. Sutherland is an
independent Verilog consultant, and specializes in providing
comprehensive expert training on the Verilog, SystemVerilog and
the Verilog PLI. Mr. Sutherland can be reached by e-mail at
stuart@sutherland-hdl.com. Other papers by Stuart
Sutherland are available at www.sutherland-hdl.com.

Table 1: Tool support for SystemVerilog

SystemVerilog Extension Tool Support

Time unit and precision specification

Filling vectors with all ones

New logic data type (replaces reg)

Relaxed rules for using variables

Relaxed rules for passing values through ports

Simplified module instances (dot-name, dot-star)

Function argument passing by name

Multiple statements in tasks and functions

Function return values using return

Named block ends

New procedural blocks (always_comb, ...)

unique and priority decision modifiers

2-state bit data type

New operators (++, --, +=, ...)

Enumerated types

User-defined types (typedef)

for loop local declarations, multiple variables

Packages and external declarations

Interfaces

New data types, int, shortint, bit, ...

Structures and unions

Assign to multiple array elements, copy arrays

do...while bottom testing loop

break, continue, return jump statements

task/function argument passing by reference

Parameterized data types

Assertions

Testbench program blocks

Classes

Dynamic arrays

Test synchronization (semaphores, mailboxes)

Constrained random values

Final blocks

Direct Programming Interface (DPI)
8

	SystemVerilog, ModelSim, and You (Is there anything in SystemVerilog useful in your work?)
	1 Convenience extensions
	1.1 Time unit and precision
	1.2 Filling vectors
	1.3 New logic data type
	1.4 Relaxed rules for using variables
	a) assigned values by any number of procedural assignment statements, or...
	b) assigned a value by a single continuous assignment statement, or...
	c) connected to a the output of a single primitive, or...
	d) connected to the receiving side of a single module port.

	1.5 Relaxed rules for passing values through ports
	1.6 Simplified module instantiations
	1.7 Function argument passing by name
	1.8 Multiple statements in tasks and functions
	1.9 Function return values
	1.10 Named block ends

	2 RTL modeling extensions
	2.1 New procedural blocks
	2.2 Unique and priority decision statements
	2.3 2-state modeling
	2.4 Enumerated types
	2.5 User defined types
	2.6 Operators
	2.7 Enhanced for loops

	3 High-level modeling extensions
	3.1 Packages and compilation units
	3.2 Interfaces
	3.3 Abstract data types
	3.4 Structures and unions
	3.5 Unpacked arrays
	3.6 Bottom testing loops
	3.7 Jump statements
	3.8 Task and function argument pass by reference
	3.9 Redefinable data types

	4 Verification extensions
	4.1 Assertions
	4.2 Test program blocks
	4.3 Classes
	4.4 Dynamic arrays
	4.5 Process synchronization
	4.6 Constrained random value generation
	4.7 Enhanced fork—join
	4.8 Final blocks
	4.9 Direct Programming Interface

	5 Using SystemVerilog with ModelSim
	6 Suggestions for adopting SystemVerilog
	1) Begin using the extensions designated as convenience extensions today. These extensions to Ver...
	2) If supported by your software tools (particularly synthesis compilers), immediately begin usin...
	3) As early as possible, begin adding basic assertions to designs. While the full capabilities of...
	4) As needed, add SystemVerilog verification constructs to the testbench. Some types of designs w...

	7 Other EDA companies and SystemVerilog
	8 Conclusion
	9 References
	10 About the author

