
Verilog, The Next Generation:
Accellera’s SystemVerilog

Stuart Sutherland
Sutherland HDL, Inc., Portland, Oregon

stuart@sutherland-hdl.com

Abstract
This paper provides an overview of the proposed Accellera
SystemVerilog standard. SystemVerilog is a blend of C,
C++, SUPERLOG and Verilog, which greatly extends the
ability to model designs at an abstract architectural level.
The paper also discusses the current status of the proposed
standard.

1. Introduction
Moore's law is still proving to be true; the designs we are
creating keep getting larger and larger at an amazing pace.
Hardware design and verification languages need to keep
up with the pace of ever increasing design sizes. The IEEE
1364 Verilog-20011,2 standard helps, with many significant
enhancements to the Verilog language. But, the IEEE
standardization process is slow and cumbersome. It took
four years from the time work was started on Verilog-2001
until the IEEE ratified the standard. By time Verilog-2001
was approved, our design needs were already demanding
more from the language. We cannot wait another 4 years
for the next set of enhancements to the Verilog language.
To provide Verilog designers with greater capability, at a
faster pace, Accellera—the combined VHDL International
and Open Verilog International organizations—has
proposed a set of high-level extensions to the Verilog
language, known as SystemVerilog3. These extensions
provide powerful enhancements to Verilog, These
extensions provide powerful enhancements to Verilog,
such as C language data types, structures, packed and
unpacked arrays, interfaces, assertions, and much more.
Origins of SystemVerilog: SystemVerilog began with
donations of major portions of the SUPERLOG language
by Co-design4, and assertions work by Verplex. These
donations were made about July, 2001. The Accellera
HDL+ subcommittee then met an average of twice
monthly to standardize these donations. A major part of
this standardization effort has been to ensure that
SystemVerilog is fully compatible with the IEEE 1364-
2001 Verilog standard. Members of the Accellera HDL+

technical subcommittee include experts in simulation
engines, synthesis compilers, verification methodologies,
members of the IEEE Verilog Standards Group, and senior
design and verification engineers.

2. Interfaces
Background: Verilog connects one module to another
through module ports. This requires a detailed knowledge
of the intended hardware design, in order to define the
specific ports of each module that makes up the design.
Early in a design cycle, this detail may not be well
established, yet it is difficult to change the port
configurations of a design once the initial module ports
have been defined. In addition, several modules often have
many of the same ports, requiring redundant port
definitions for each module. Every module connected to a
PCI bus, for example, must have the same ports defined.
SystemVerilog provides a new, high level of abstraction for
module connections, called interfaces. An interface is
defined independent from modules, between the keywords
interface and endinterface. Modules can use an
interface the same as if it were a single port.
In its simplest form, an interface can be considered a
bundle of wires. All the signals that make up a PCI bus, for
example, can be bundled together as an interface. Using
interfaces makes it possible to begin a design without first
establishing all of the interconnections between modules.
As the details of design become more established, the
specific signals within the interfaces can be easily be
represented; any changes within the interfaces will be
reflected in all modules using the interfaces, without
having to change each module..
interface chip_bus; // Define the interface
wire read_request, read_grant;
wire [7:0] address, data;

endinterface: chip_bus

module RAM(chip_bus io, //use the interface
input clk);

//io.read_request references a signal in
// the interface

endmodule

module CPU(chip_bus io, input clk);
...

endmodule

module top;
reg clk = 0;
chip_bus a; //instantiate the interface

//connect interface to module instances
RAM mem(a, clk);
CPU cpu(a, clk);

endmodule

SystemVerilog interfaces go beyond just representing
bundles or interconnecting signals. An interface can also
include functionality that is shared by each module that
uses the interface. In addition, an interface can include
built-in protocol checking. Shared functionality and
protocol checking is possible because SystemVerilog
interfaces can include parameters, constants, variables,
structures, functions, tasks, initial blocks, always blocks,
and continuous assignments.

3. Global declarations and statements
Background: Verilog does not have a global space, other
than that the names of modules can be referenced from any
other module, as module instances. Verilog also allows any
number of top-level modules, which creates unrelated
hierarchy trees.
SystemVerilog adds an implicit top-level hierarchy, called
$root. Any declarations or statements outside of a module
boundary will be in the $root space. All modules,
anywhere in the design hierarchy, can refer to names
declared in $root. This allows global variables, functions
and other information to be declared, that are shared by all
levels of hierarchy in the design.
reg error _flag; //global variable

function compare (...); //global function

always @(error_flag) //global statement
...

module test;
chip1 u1 (...)

endmodule

module chip1 (...);
FSM u2 (...);
always @(data)
error_flag = compare(data, expected);

endmodule

module FSM (...);
...
always @(state)
error_flag = compare(state, expected);

endmodule

4. Time unit and precision
Background: In Verilog, time values are specified as a
number, without any time unit. For example:
forever #5 clock = ~clock;

The Verilog standard does not specify a default unit or time
or time precision (where precision is the maximum number
of decimal points used in time values). The time units and
precision are a property of each module, set by the
compiler directive ‘timescale. There is an inherent
danger with compiler directives, however, because they are
dependent on source code order. If there are multiple
‘timescale directives in the source code, the last
directive encountered before a module is elaborated
determines the time units of the module. If a module is not
preceded by a ‘timescale directive, the time units and
precision of that module become dependent on the order
the source code is compiled. This can potentially cause
different simulation runs to have different results.
SystemVerilog adds two significant enhancements to
control the time units of time values. First, time values can
have an explicit unit specified. The unit is one of s, ms, ns,
ps or fs, for seconds down to femtoseconds. The time unit
is a suffix to the time value, and cannot be preceded by a
white space. For example:
forever #5ns clock = ~clock;

Second, SystemVerilog allows the time units and time
precision to be specified with new keywords, timeunit and
timeprecision. These declarations can be specified within
any module, or globally, in the $root space. The units and
precision must be a power of 10, ranging from seconds
down to femtoseconds.
timeunits 1ns;
timeprecision 10ps;

5. Abstract data types
Background: Verilog provides hardware-centric net, reg
and variable data types. These types represent 4-state logic
values, and are used to model and verify hardware
behavior at a detailed level. The net data types also have
multiple strength levels and resolution functions for zero or
multiple drivers of the net.
SystemVerilog includes the C language char and int data
types, which allows C and C++ code to be directly used in
Verilog models and verification routines. The Verilog PLI
is no longer needed to integrate Bus Functional Models,
algorithmic models, and C functions. SystemVerilog also
adds several new data types to Verilog, which allow
hardware to modeled at more abstract levels.
• char — a 2-state signed variable, that is the same as the

C char data type, which may be an 8 bit integer (ASCII)
or a short int (Unicode).

• int — a 2-state signed variable, that is similar to the C
int data type, but is defined to be exactly 32 bits.

• shortint — a 2-state signed variable, that is defined to
be exactly 16 bits.

• longint — a 2-state signed variable, that is defined to
be exactly 64 bits, similar to the C long long type.

• byte — a 2-state signed variable, that is defined to be
exactly 8 bits.

• bit — a 2-state unsigned data type of any vector width,
that can be used in place of the Verilog reg data type.

• logic — a 4-state unsigned data type of any vector
width, that can be used in place of either a Verilog net or
reg data type, but with some restrictions.

• shortreal — a 2-state single-precision floating point
variable, that is the same as the C float type.

• void — represents no value, and can be specified as the
return value of a function, the same as in C.

The SystemVerilog bit and other data types allow
modeling designs using 2-state logic, which is much more
efficient for simulation performance. Since the Verilog
language does not have a two-state data type, many
simulators have provided the capability as an option to the
simulator. These options are not portable to all simulators,
however, and often have the side effect of forcing 2-state
logic in regions of a design where 3-state or 4-state logic is
needed. The SystemVerilog bit data type can greatly
improve simulation performance, while still allowing 3-
state or 4-state logic in the regions of a design where
needed. By using a data type with defined behavior instead
of proprietary simulator options, 2-state models will be
portable to all SystemVerilog simulators.
The SystemVerilog logic data type is more versatile than
the Verilog net and reg data types, which makes it easier to
model hardware at any level of abstraction. The logic
type can receive a value one of the following ways:
• Assigned values by any number of procedural

assignment statements, replacing the Verilog reg type
• Assigned a value by a single continuous assignment

statement, a restricted replacement for the Verilog wire
• Connected to a the output of a single primitive, a

restricted replacement for the Verilog wire type
Since the logic type can be used in place of either a
Verilog reg or a wire (with restrictions), it allows writing
models at a high level of abstraction, and adding details to
the model as the design progresses without having to
change data type declarations.
The logic data type does not represent strength levels and
does not have resolution functions for wired logic, which
makes the logic type more efficient to simulate and
synthesize than the Verilog wire type.

6. Signed and unsigned modifiers
Background: By default, the Verilog net and reg data
types are unsigned types, and the integer type is a signed
type. The Verilog-2001 standard allows the unsigned types
to be explicitly declared as signed data types using the
signed keyword.
SystemVerilog adds the counterpart, the capability to
explicitly declare signed data types to be unsigned, using
the unsigned keyword. For example:
int unsigned j;

It should be noted that unsigned is a reserved word in the
Verilog language, but is not used by the Verilog standard.

7. User defined types
Background: Verilog does not allow users to define new
data types.
SystemVerilog provides a method to define new data types
using typedef, similar to C. The user-defined type can
then be used in declarations the same as with any data type.
typedef unsigned int uint;
uint a, b;

A user-defined type can be used before it is defined,
provided it is first identified using an empty typedef.
typedef int48; //full definition is elsewhere
int48 c;

8. Enumerated types
Background: Verilog does not have enumerated types.
Identifiers must be explicitly declared as a net, variable or
parameter, and assigned values.
SystemVerilog allows the creation of enumerated types,
using a C-like syntax. An enumerated type has one of a set
of named values. By default, the values increment from an
initial value of 0, but the initial value can also be explicitly
specified. The enumerated type will have the same vector
size as the initial value.
enum {red, yellow, green} RGB;
enum {WAIT=2’b01, LOAD, DONE} states;

Using typedef, an enumerated type can be given a name,
allowing the type to be used in many places.
typedef enum {FALSE=1’b0, TRUE} boolean;
boolean ready;
boolean test_complete;

9. Structures and unions
Background: The Verilog HDL does not have structures
or unions, which are useful for grouping several
declarations together.
SystemVerilog adds structures and unions. The declaration
syntax is similar to C.

struct {
reg [15:0] opcode;
reg [23:0] addr;

} IR;

union {
int i;
shortreal f;

} N;

Fields within a structure or union are referenced using a
period between the variable name and the field name.
IR.opcode = 1; //set the opcode field in IR
N.f = 0.0; //set N as floating point value

A structure or union definition can be given a name using
typedef.
typedef struct {

bit [7:0] opcode;
bit [23:0] addr;

} instruction; //named structure type

instruction IR; //allocate a structure

A structure can be assigned as a whole, using a
concatenation of values.
instruction = {5, 200};

Structures can be passed to or from a function or task as a
whole, and can be passed through module ports.

10. Arrays
Background: Verilog HDL data types can be declared as
arrays. The reg and net types can also have a vector width
declared. A dimension declared before the object name is
the “vector width” dimension. The dimensions declared
after the object name are the “array” dimensions.
reg [7:0] r1 [1:256]; //256 8-bit variables

SystemVerilog uses different terminology. The term
“packed array” is used to refer to the dimensions declared
before the object name, instead of vector width. The term
“unpacked array” is used to refer to the dimensions
declared after the object name. Packed arrays can only be
made of the types: bit, logic, reg, wire, and the other
net types. Multiple dimensions can be declared for packed
arrays as well for unpacked arrays.
bit [7:0] a; //a 1-d packed array
bit b [7:0]; //a 1-d unpacked array
bit [0:11] [7:0] c; //a 2-d packed array
bit [3:0] [7:0] d [1:10]; /* a 10 element
unpacked array of a packed array, consisting
of 4 8-bit bytes */

Unpacked dimensions are referenced before packed
dimensions. This allows referencing an entire packed array
as a single element. In the last example above, d[1] refers
to a single element in the unpacked array. That element is
an array of four bytes.

11. Declarations in unnamed blocks
Background: Verilog allows variables to be declared in a
named begin–end or fork–join statement group. These
variables are local to the group, but can be referenced
hierarchically.
SystemVerilog allows declarations to be made in unnamed
blocks as well as in named blocks. In an unnamed block, a
hierarchical name cannot be used to access the variable.
All variable types, including user-defined types,
enumerated types, structures and unions can be declared
within a begin–end or fork–join statement group

12. Constants
Background: Verilog has three specific types of constants:
parameter, specparam and localparam.
SystemVerilog allows any data type to be declared as
constant, using the const keyword.
const char colon = ":";

13. Redefinable data types
SystemVerilog extends the Verilog parameter to include
type. This powerful feature allows the data types within a
module to be redefined for each instance of the module.
module foo
#(parameter type VAR_TYPE = shortint;)
(input logic [7:0] i, output logic [7:0] o);

VAR_TYPE j = 0; /* j is of type shortint
unless redefined */

...
endmodule

module bar;
logic [3:0] i,o;
foo #(.VAR_TYPE(int)) u1 (i, o);
//redefines VAR_TYPE to a type of int

endmodule

14. Module port connections
Background: Verilog restricts the data types that may be
connected to module ports to net types, and the variable
types reg, integer and time.
SystemVerilog removes all restrictions on connections to
module ports. Any data type can be passed through ports,
including reals, arrays and structures.

15. Literal values
Background: Verilog has several limitations when
specifying or assigning literal values.
SystemVerilog adds the following enhancements to how
literal values can be specified.
• All bits of a literal value can be filled with the same value

using ‘0, ‘1, ‘z or ‘x. This allows a vector of any size
to filled, without having to explicitly specify the vector
size of the literal value.

bit [63:0] data;
data = ‘1; //set all bits of data to 1

• A string literal can be assigned to an array of characters.
A null termination is added as in C. If the size differs, it is
left justified, as in C.

char foo [0:12] = “hello world\n”;

• Several special string characters have been added:
\v for vertical tab
\f for form feed
\a for bell
\x02 for a hex number representing an ASCII character

• Arrays can be assigned literal values, using a syntax
similar to C initializers, except that the replicate operator
is also allowed. The number of nested of braces must
exactly match the number of dimensions (unlike C).

int n[1:2][1:3] = { {0,1,2}, {3{4}} };

16. Type casting
Background: The Verilog language does not have the
ability to cast values to a different data type.
SystemVerilog adds the ability to change the type of a
value to a using a cast operation, represented by <type>’.
The cast can be to any type, including user-defined types.
int’(2.0 * 3.0) //cast result to int
mytype’(foo) //cast foo to the type of mytype

A value can also be cast to a different vector size by
specifying a decimal number before the cast operation.
17’(x - 2) //cast the operation to 17 bits

The signedness of a value can also be cast.
signed'(x) //cast x to a signed value

17. Operators
Background: Verilog does not have the C language ++, --
or the C increment and decrement assignment operators.
SystemVerilog adds several new operators:
• ++ and -- increment and decrement operators
• +=, -=, *=, /=, %=, &=, ^=, |=, <<=, >>=, <<<= and >>>=

assignment operators

18. Unique and priority decision statements
Background: The Verilog if–else and case statements
can be a source of mismatches between RTL simulation
and how synthesis interprets an RTL model, if strict coding
styles are not followed. The synthesis full_case and
parallel_case pragmas can lead to further mismatches
if improperly used.

SystemVerilog adds the ability to explicitly specify when
each branch of decision statements is unique or requires
priority evaluation. The keywords unique and priority
can be specified before the if or case keyword. These
keywords can be used to instruct simulators, synthesis
compilers, and other tools the specific type of hardware
intended. Tools can use this information to check that the
if or case statement properly models the desired logic.
For example, if a decision statement is qualified as unique,
simulators can issue a warning message if an unexpected
case value is found.
bit[2:0] a;

unique if ((a==0) || (a==1)) y = in1;
else if (a == 2) y = in2;
else if (a == 4) y = in3;
//values 3,5,6,7 will cause a warning

priority if (a[2:1]==0) y = in1 //a is 0 or 1
else if (a[2] == 0) y = in2; //a is 2 or 3
else y = in3; //a is any other value

unique case(a)
0, 1: y = in1;
2: y = in2;
4: y = in3;

endcase //values 3,5,6,7 will cause a warning

priority casez(a)
2'b00?: y = in1; // a is 0 or 1
2'b0??: y = in2; //a is 2 or 3;
default: y = in3; //a is any other value

endcase

19. Bottom testing loop
Background: Verilog has the for, while and repeat
loops, all of which test to execute the loop at the beginning
of the loop.
SystemVerilog adds a do–while loop, which tests the loop
condition at the end of executing code in the loop.

20. Jump statements
Background: The C language provides several means to
jump to a new statement in execution flow: return,
break, continue and goto. Verilog does not have any of
these statements, and instead provides the ability to jump
to the end of a statement group using the disable
statement. Using disable to carry out the functionality of
break and continue requires adding block names, and can
create code that is non intuitive.
SystemVerilog adds the C break and continue

keywords, which do not require the use of block names,
and a return keyword, which can be used to exit a task or
function at any point.
• break — exits a loop, as in C

• continue — skips to the end of a loop, as in C
• return expression — exits a function
• return — exits a task or void function
SystemVerilog does not include the C goto statement.

21. Block names and statement labels
Background: Verilog allows a begin–end or fork–join
statement block to be named, by specifying the name after
the begin or fork keyword. The name represents the
entire statement block.
SystemVerilog allows a matching block name to be
specified after the block end or join keyword. This can
help document which end or join is associated with
which begin or fork when there are long blocks or nested
blocks. The name at the end of the block is optional, and
must match the name at the beginning of the block.
begin: foo //block name is after the begin
...
fork: bar //nested block with a name
...

join: bar //name must be the same
...

end: foo //name must be same as block name

SystemVerilog also allows individual statements to labeled,
as in C. A statement label is placed before the statement,
and is used to identify just that statement.
initial begin
test1: read_enable = 0;

...
test2: for (i=0; i<=255; i++)

...
end

22. Event control enhancements
Background: Verilog uses the @ token to control
execution flow based on specific events.
SystemVerilog enhances the @ event control.
Conditional event control: One common usage of @ is to
infer latch behavior with an enable input. The following
example illustrates a common style for modeling a latch:
always @(data or en) //RTL latch model
if (en) y <= data;

This coding style can be inefficient for simulation, because
even when the enable input is not asserted, the event
control will trigger on every change of the data input.
SystemVerilog adds an iff condition that can be specified
in event controls. The iff condition must be true in order
for the control to trigger. By moving the enable decision
into the event control, the control will only trigger when
the latch output can change.
always @(a or en iff en==1)
y <= a;

Expressions in event controls: Verilog allows expressions
to be used in an @ event control list. For example:
always @((a * b))
always @(memory[address])

In first example, should the event control trigger when the
operands change, or only if the result of the operation
changes? In second example, should the event control trig-
ger when the address to the memory changes, or only if the
value in the selected memory address changes? The IEEE
Verilog standard allows simulators to optimize differently
when the @ event control contains an expression. This can
lead to different behavior in different simulators, and a
mismatch in simulation and synthesis results.
SystemVerilog adds a changed keyword, which is used as
a modifier in the event control list. The @(changed
expression) explicitly defines that the event control only
triggers on a change of the result of the expression.
always @(changed (a*b))
always @(changed memory[address])

Assignments in event controls: Verilog does not allow an
assignment to made within an event control.
SystemVerilog allows assignment expressions to be used in
an event control. The event control is only sensitive to
changes on the right side of the assignment.
always @((y = a * b))

23. New procedures
Background: Verilog uses the always procedure to
represent RTL models of sequential logic, combinational
logic and latched logic. Synthesis and other software tools
must infer the intent of the always procedure from the
context of the @ event control at the beginning of the
procedure (the “sensitivity list”) and the statements within
the procedure. This inference can lead to mismatches in
simulation and synthesis results.
SystemVerilog adds three new procedures to explicitly
indicate the intent of the logic:
• always_ff — the procedure should represent sequential

logic
• always_comb — the procedure should represent

combinational logic
• always_latch — the procedure should represent

latched logic
For example:
always_comb @(a or b or sel) begin
if (sel) y = a;
else y = b;

end

Software tools can examine the event control sensitivity
list and procedure contents to ensure that the functionality
matches the type of procedure. For example, a tool can

check that an always_comb procedure is sensitive to all
external values read within the procedure, makes
assignments to the same variables for every branch of
logic, and that branches covers every possible condition. If
any of these conditions are not true, then a software tool
can report that the procedure does not properly model
combinational logic.

24. Dynamic processes
Background: Verilog provides a form of static concurrent
processes using fork–join. Each branch of a fork is a
separate, parallel process. Execution of any statements
which follow the fork–join will not be executed until
every process in the group has completed.
initial
begin
fork
send_packet_task(1,255,0);
send_packet_task(7,128,5);
watch_result_task(1,255,0);
watch_result_task(7,128,5);

join //all tasks must complete to get here
end

SystemVerilog adds a new, dynamic process, using the
process keyword. This forks off a process, and then
continues execution without waiting for the process to
complete. The process does not block the flow of execution
of statements within the procedure or task. This allows
multi-threaded processes to be modeled.
initial
begin
process send_packet_task(1,255,0);
process send_packet_task(7,128,5);
process watch_result_task(1,255,0);
process watch_result_task(7,128,5);

end //all processes run in parallel

25. Task and function enhancements
SystemVerilog adds several enhancements to the Verilog
task and function constructs.
Static and automatic storage: By default all storage
within a Verilog task or function is static. Verilog-2001
allows tasks and functions to be declared as automatic,
making all storage within the task or function automatic.
With SystemVerilog:
• Specific data within a static task or function can be

explicitly declared as automatic. Data declared as
automatic has the lifetime of the call or block, and is
initialized on each entry to the task or function call.

• Specific data within an automatic task or function can be
explicitly declared as static. Data declared to be static
in an automatic task or function has a static lifetime but a
scope local to the block.

Return from any point: Verilog returns from a task or
function when the execution reaches the endtask or
endfunction keyword. The return value of a function is
the last value assigned to the name of the function.
SystemVerilog adds a return keyword, as discussed in
section 20 of this paper. Using this keyword, a task or
function can be exited at any point.
Multiple statements: Verilog requires that a task or
function have a single statement or statement block.
Multiple statements must be grouped into a single begin–
end or fork–join block.
SystemVerilog removes the restriction of a single statement
or block. Therefore, multiple statements can be listed in a
task or function without using begin–end or fork–join.
Statements that are not grouped will execute sequentially,
as if within a begin–end. It also legal to create a task or
function definition with no statements.
Void functions: The Verilog language requires that a
function have a return value, and that function calls receive
the return value.
SystemVerilog adds a void data type, which can be
specified as the return type of a function. Void functions
can be called the same as a Verilog task, without receiving
a return value. The difference between a void function and
a task is that functions have several restrictions, such as no
time controls.
Function inputs and outputs: The Verilog standard
requires that a function have at least one input, and that
functions can only have inputs.
SystemVerilog removes these restrictions. Functions can
have any number of inputs, outputs and inouts, including
none.

26. Continuos assignment enhancements
Background: In Verilog, the left hand side of a continuous
assignment can only be a net data type, such as wire. The
continuous assignment is considered a driver of the net.
Nets can have any number of drivers.
SystemVerilog allows any variable data type except reg to
be used on the left hand side of a continuous assignment.
Unlike nets, however, all other data types are restricted to
being driven by a single continuous assignment. It is illegal
to mix continuous assignments and procedural assignments
(including initial assignments) for the same variable.

27. $bits system function
Background: Verilog does not have an equivalent to the C
sizeof function.
SystemVerilog adds a new $bits built-in system function.
This function returns the number of hardware bits required

to hold a value (a 4-state value requires one hardware bit,
even though it might require multiple bits to store within
simulation). This function can also be used to determine
the number of bits represented by a structure.

28. ‘define enhancements
SystemVerilog enhances the capabilities of the ‘define
compiler directive to support strings as macro arguments.
The macro text string can include an isolated quote, which
must be preceded by a back tick (`"), which allows macro
arguments to be included in strings. The macro text can
include a backslash (\) at the end of a line to show
continuation on the next line. If the macro text string is to
contain a backslash, the backslash should be enclosed in
back ticks (`\`), so that it will not be treated as the start
of a Verilog escaped identifier. The macro text string can
also include a double back tick (``), which allows
identifiers to be constructed from arguments. These
enhancements make the `define directive much more
versatile. For example, the `include directive can be
followed by a macro name instead of a literal string.
`define f1 "../project_top/opcode_defines"
`include `f1

29. State machine modeling
The Accellera HDL+ committee defining the
SystemVerilog standard is currently evaluating additional
constructs that will allow modeling complex state
machines at a higher level of abstraction than is possible
with Verilog. These constructs include:
• Enumerated types
• A special state data type
• A transition statement
• A transition operator
Enumerated types are discussed in section 8 of this paper.
The specific features and syntax for the special state data
type and transitions were not finalized at the time this
paper was prepared for publication.

30. Assertions
The committee defining the SystemVerilog standard is
currently evaluating a proposal to add assertions to the
proposed SystemVerilog standard. This effort is well
underway, but the specific features and syntax were not
finalized at the time this paper was prepared for
publication.

31. Current status of SystemVerilog
The standardization of the first generation of
SystemVerilog is nearly complete, and is expected to be
ratified by the Accellera board in July, 2002. Once

approved, Accellera plans to donate SystemVerilog to the
IEEE 1364 Verilog Standards Group, for incorporation into
a future version of the IEEE 1364 Verilog standard.

32. Future plans for SystemVerilog
The first generation of SystemVerilog as presented in this
paper is not the end of the road—it is the beginning.
Accellera will continue to review the needs of Verilog
design and verification. New features will be added to the
SystemVerilog standard as they become well defined.
These extensions will also be donated to the IEEE 1364
Verilog Standards Group.

33. Conclusion
SystemVerilog provides a major set of extensions to the
Verilog-2001 standard. These extensions allow modeling
and verifying very large designs more easily and with less
coding. By taking a proactive role in extending the Verilog
language, Accellera is providing a standard that can be
implemented by simulator and synthesis companies
quickly, without waiting for the protracted IEEE
standardization process. It is fully expected that the IEEE
Verilog standards group will adopt the SystemVerilog
extensions as part of the next generation of the IEEE 1364
Verilog standard.

34. References
[1] “IEEE Std. 1364-2001 standard for the Verilog Hardware

Description Language”, IEEE, Pascataway, New Jersey,
2001.

[2] S. Sutherland, “Verilog 2001: A Guide to the new Verilog
Standard”, Kluwer Academic Publishers, Boston, Massachu-
setts, 2001.

[3] “SystemVerilog 3.0: Accellera’s Extensions to Verilog”,
Accellera, Napa, California, 2001.

[4] “SUPERLOG® Extended Synthesizable Subset Language
Definition”, Draft 3, May 29, 2001, © 1998-2001 Co-Design
Automation Inc.

35. About the author
Mr. Stuart Sutherland is a member of the Accellera HDL+
technical subcommittee that is defining SystemVerilog,
and is the technical editor of the SystemVerilog Reference
Manual. He is also a member of the IEEE 1364 Verilog
Standards Group, where he serves as chair of the PLI task
force. Mr. Sutherland is an independent Verilog consultant,
and specializes in providing comprehensive expert training
on the Verilog HDL and PLI. Mr. Sutherland can be
reached by e-mail at stuart@sutherland-hdl.com.
Updated copies of this paper and presentation slides are
available at www.sutherland-hdl.com.

