

Getting the Most out of the
New Verilog-2000 Standard

Stuart Sutherland

Sutherland HDL, Inc.

Don Mills
LCDM Engineering

stuart@sutherland.com
mills@lcdm-eng.com

ABSTRACT

Verilog-2000 adds many significant enhancements to the Verilog language, which add greater
support for configurable IP modeling and deep-submicron accuracy, and development of design
management. Other enhancements make Verilog easier to use. These changes will affect
everyone who uses the Verilog language, as well as those who implement Verilog software tools.
This paper will review and highlight the main features added to the Verilog standard for the IEEE
1364-2001 update. The focus will be on new simulation and synthesis constructs. Where
possible, status regarding Synopsys support for the new features will also be noted.

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

2

1.00 History of the IEEE 1364 Verilog standard
The Verilog Hardware Description Language was first introduced in 1984, as a proprietary
language from Gateway Design Automation. The original Verilog language was designed to be
used with a single product, the Gateway Verilog-XL digital logic simulator.

In 1989, Gateway Design Automation was acquired by Cadence Design Systems. In 1990,
Cadence released the Verilog Hardware Description Language and the Verilog Programming
Language Interface (PLI) to the public domain. Open Verilog International (OVI) was formed to
control the public domain Verilog, and to promote its usage. Cadence turned over to OVI the
FrameMaker source files containing most, but not all, of the Cadence Verilog-XL user’s manual.
This document became OVI’s Verilog 1.0 Reference Manual.

In 1993, OVI released its Verilog 2.0 Reference Manual, which contained a few enhancements to
the Verilog language, such as array of instances, and major enhancements to the Verilog PLI.
OVI then submitted a request to the IEEE to formally standardize Verilog 2.0. The IEEE formed
a standards working group to create the standard, and, in 1995, IEEE 1364-1995 became the
official Verilog standard.

It is important to note that for Verilog-1995, the IEEE standards working group did not consider
any enhancements to the Verilog language. The goal was to standardize the Verilog language the
way it was being used at that time. The IEEE working group also decided not to create an
entirely new document for the IEEE 1364 standard. Instead, the OVI FrameMaker files were
used to create the IEEE standard. Since the origin of the OVI manual was Gateway’s Verilog-XL
user’s manual, the IEEE 1364-1995 and IEEE 1364-2001 Verilog language reference manuals
[1][2] are still organized somewhat like a user’s guide.

2.00 Goals for Verilog-2000 standard
Work on the IEEE 1364-2001 Verilog standard began in January 1997. Three major goals were
established:
• Enhance the Verilog language to help with today’s deep-submicron and intellectual property

modeling issues.
• Ensure that all enhancements were both useful and practical, and that simulator and synthesis

vendors would implement Verilog-2000 in their products.
• Correct any errata or ambiguities in the IEEE 1364-1995 Verilog Language Reference

Manual.

The Verilog-2000 standard was submitted for ballot by IEEE members in June of 2000. The
standard was approved by the ballot group by an overwhelming majority, approximately 90%.
However, a number of comments received from the ballot group resulted in the IEEE standard
working group making several clarifications on the new enhancements in Verilog-2000. These
changes were re-submitted to the ballot group in December of 2000, and were again approved by
an overwhelming majority (92%). Final approval by the IEEE for the Verilog-2000 standard is
expected to be received in March 2001.

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

3

The Verilog-2000 standard working group was comprised of about 20 participants, representing a
diversified mix of Verilog users, simulation vendors, and synthesis vendors. The working group
was divided into three task forces: the ASIC Task Force developed enhancements to meet the
needs of very deep-submicron timing accuracy; the Behavioral Task Force developed
enhancements for Behavioral and RTL modeling; the PLI Task Force enhanced the Verilog
Programming Language Interface to support changes from the other task forces, as well as adding
new capabilities to the PLI.

3.00 Modeling enhancements
The 22 enhancements listed in this section give Verilog designers more capability for creating
Verilog models. Many enhancements improve the ease and accuracy of writing synthesizable
RTL models. Other enhancements allow models to be more scalable and re-usable. Only
changes which add new functionality or syntax are listed here. Verilog-2000 also contains many
clarifications to Verilog-1995, which do not add new functionality. Notes are added to the sub-
sections indicating Synopsys support with Presto and VCS as of the time this paper was
completed.

3.01 Design management—Verilog configurations
The Verilog-1995 standard leaves design management to software tools, rather than making it
part of the language. Each simulator vendor has devised ways to handle different versions of
Verilog models, but these tool-specific methods are not portable across all Verilog software
tools.

Verilog-2000 adds configuration blocks, which allow the exact version and source location of
each Verilog module to be specified as part of the Verilog language. For portability, virtual
model libraries are used in configuration blocks, and separate library map files associate virtual
libraries with physical locations. Configuration blocks are specified outside of module
definitions. The names of configurations exist in the same name space as module names and
primitive names. New keywords config and endconfig are reserved in Verilog-2000. Additional
keywords are reserved for use within a configuration block: design, instance, cell, use and
liblist.

The full syntax and usage of Verilog configuration blocks is beyond the scope of this paper. The
following example illustrates how a simple Verilog design configuration might be used. The
Verilog source code is typical; a test bench module contains an instance of the top-level of a
design hierarchy, and the top level of the design includes instances of other modules.

module test;
...
myChip dut (...); /* instance of design */
...

endmodule

module myChip(...);

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

4

...
adder a1 (...);
adder a2 (...);
...

endmodule

The configuration block specifies the source code location of all, or specific, module instances.
Because the configuration is specified outside of Verilog modules, the Verilog model source
code does not need to be modified to reconfigure a design. In this configuration example,
instance a1 of the adder will be compiled from the RTL library, and instance a2 from a specific
gate-level library.

/* define a name for this configuration */
config cfg4

/* specify where to find top level modules */
design rtlLib.top

/* set the default search order for finding

instantiated modules */
default liblist rtlLib gateLib;

/* explicitly specify which library to use

for the following module instance */
instance test.dut.a2 liblist gateLib;

endconfig

The configuration block uses virtual libraries to specify the location of the Verilog model
sources. A library map file is used to associate the virtual library names with physical file
locations. For example:

/* location of RTL models (current directory) */
library rtlLib "./*.v";

/* Location of synthesized models */
library gateLib "./synth_out/*.v";

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 no no no

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

5

3.02 Scalable models—Verilog generate
The Verilog-1995 standard has limitations on defining Verilog models that are scalable and easy
to re-use in other designs. Verilog-1995 has the array of instances construct, which, though
powerful, does not provide the flexibility needed for truly scalable, complex design structures.

Verilog-2000 adds generate loops, which permit generating multiple instances of modules and
primitives, as well as generating multiple occurrences of variables, nets, tasks, functions,
continuous assignments, initial procedures, and always procedures. Generated declarations and
instantiations can be conditionally created, using if– else decisions and case statements.

Four new keywords have been added in Verilog-2000: generate, endgenerate, genvar and
localparam. The genvar keyword is a new data type, which stores positive integer values. It
differs from other Verilog variables in that it can be assigned values and can be changed during
compile or elaboration time. The index variable used in a generate loop must be declared as a
genvar. A localparam is a constant that is similar to a parameter, but which cannot be changed
using parameter redefinition. A generate block can also use certain Verilog programming
statements to control what objects are generated. These are: for loops, if–else decisions, and
case decisions.

The following example illustrates using generate to create scalable module instances for a
multiplier. If either of the multiplier’s a_width or b_width parameters are less than 8, a CLA
multiplier is instantiated. If both of the a_width and b_width parameters are 8 or more, a
Wallace tree multiplier is instantiated.

module multiplier (a, b, product);
parameter a_width = 8, b_width = 8;
localparam product_width = a_width+b_width;
input [a_width-1:0] a;
input [b_width-1:0] b;
output [product_width-1:0] product;

generate
if((a_width < 8) || (b_width < 8))
CLA_multiplier #(a_width, b_width)
u1 (a, b, product);

else
WALLACE_multiplier #(a_width, b_width)
u1 (a, b, product);

endgenerate
endmodule

The next example illustrates a multi-bit wide adder which uses a generate for-loop to instantiate
both the primitive instances and the internal nets connecting the primitives. A re-definable
parameter constant is used to set the width of the multi-bit adder and the number of instances
generated.

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

6

module Nbit_adder (co, sum, a, b, ci);
parameter SIZE = 4;
output [SIZE-1:0] sum;
output co;
input [SIZE-1:0] a, b;
input ci;
wire [SIZE:0] c;

genvar i;

assign c[0] = ci;
assign co = c[SIZE];

generate
for(i=0; i<SIZE; i=i+1)
begin:addbit
wire n1,n2,n3; //internal nets
xor g1 (n1 ,a[i] ,b[i]);
xor g2 (sum[i] ,n1 ,c[i]);
and g3 (n2 , a[i] ,b[i]);
and g4 (n3 , n1 ,c[i]);
or g5 (c[i+1] ,n2 ,n3);

end
endgenerate

endmodule

In the preceding example, each generated net will have a unique name, and each generated
primitive instance will have a unique instance name. The name comprises the name of the block
within the for-loop, plus the value of the genvar variable used as the loop index. The names of
the generated n1 nets are:

addbit[0].n1
addbit[1].n1
addbit[2].n1
addbit[3].n1

The instance names generated for the first xor primitive are:

addbit[0].g1
addbit[1].g1
addbit[2].g1
addbit[3].g1

Note that these generated names use square brackets in the name. These are illegal characters in
user-specified identifier names, but are permitted in generated names.

Synopsys Support:

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

7

 VCS 6.0 VCS 6.1 PRESTO
 no no no

3.03 Constant functions
Verilog syntax requires that the declaration of vector widths and array sizes be based on literal
values or constant expressions. For example:

parameter WIDTH = 8;
wire [WIDTH-1:0] data;

A limitation in the Verilog-1995 standard is that the constant expression can only be based on
arithmetic operations. It is not possible to use programming statements to determine the value of
a constant expression.

Verilog-2000 adds a new usage of Verilog functions, referred to as a constant function. The
definition of a constant function is the same as for any Verilog function. However, a constant
function is restricted to only using constructs whose values can be determined at compile or
elaboration time. Constant functions help to create re-usable models which can be scaled to
different sizes.

The following example defines a function called clogb2 that returns an integer which has the
value of the ceiling of the log base 2. This constant function is used to determine how wide a
RAM address bus must be, based on the number of addresses in the RAM. (This example uses
another Verilog-2000 enhancement, a power operator.).

module ram (address, write, chip_select, data);
parameter WIDTH = 8;
parameter SIZE = 256;
localparam ADDRESS_SIZE = clogb2(SIZE);
input [ADDRESS_SIZE-1:0] address;
input write, chip_select;
inout [WIDTH-1:0] data;

reg [WIDTH-1:0] ram_data [0:SIZE-1];

//define the clogb2 constant function
function integer clogb2;
input depth;
integer i;
begin
clogb2 = 1;
for (i = 0; 2**i < depth; i = i + 1)
clogb2 = i + 1;

end
endfunction

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

8

...
endmodule

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 no no no

3.04 Indexed vector part selects
In the Verilog-1995 standard, variable bit selects of a vector are permitted, but part-selects must
be constant. Thus, it is illegal to use a variable to select a specific byte out of a word. The
Verilog-2000 standard adds a new syntax, called indexed part selects. With an indexed part
select, a base expression, a width expression, and an offset direction are provided, in the form of:

[base_expr +: width_expr] //positive offset
[base_expr -: width_expr] //negative offset

The base expression can vary during simulation run-time. The width expression must be
constant. The offset direction indicates if the width expression is added to or subtracted from the
base expression. For example,:

reg [63:0] word;
reg [3:0] byte_num; //a value from 0 to 7
wire [7:0] byteN = word[byte_num*8 +: 8];

In the preceding example, if byte_num has a value of 4, then the value of word[39:32] is assigned
to byteN. Bit 32 of the part select is derived from the base expression, and bit 39 from the
positive offset and width expression.

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 no yes yes

3.05 Multidimensional arrays
The Verilog-1995 standard allows 1-dimensional arrays of variables. Verilog-2000 extends this
by permitting:
• Multi-dimensional arrays
• Arrays of both variable and net data types

This enhancement requires a change to both the syntax of array declarations, as well as the syntax
for array indexing. Examples of declaring and indexing a 1-dimensional and a 3-dimensional
array are shown below.

//1-dimensional array of 8-bit reg variables

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

9

//(allowed in Verilog-1995 and Verilog-2000)
reg [7:0] array1 [0:255];
wire [7:0] out1 = array1[address];

//3-dimensional array of 8-bit wire nets
//(new for Verilog-2000)
wire [7:0] array3 [0:255][0:255][0:15];
wire [7:0] out3 = array3[addr1][addr2][addr3];

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 no yes yes

3.06 Bit and part selects within arrays
The Verilog-1995 standard does not permit directly accessing a bit or part select of an array
word. A full array word has to be copied to a temporary variable, and the bit or part selected
from the temporary variable. Verilog-2000 removes this restriction, and allows bit selects and
part selects of array words to be directly accessed. For example:

//select the high-order byte of one word in a
//2-dimensional array of 32-bit reg variables
reg [31:0] array2 [0:255][0:15];
wire [7:0] out2 = array2[100][7][31:24];

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 no no yes

3.07 Signed arithmetic extensions
For integer math operations, Verilog uses the data types of the operands to determine if signed or
unsigned arithmetic should be performed. If either operand is unsigned, unsigned operations are
performed. To perform signed arithmetic, both operands must be signed. In Verilog-1995, the
integer data type is signed, and the reg and net data types are unsigned. A limitation in Verilog-
1995 is that the integer data type has a fixed vector size, which is 32-bits in most Verilog
simulators. Thus, signed integer math in Verilog-1995 is limited to 32-bit vectors. The Verilog-
2000 standard adds five enhancements to provide greater signed arithmetic capability:
• Reg and net data types can be declared as signed
• Function return values can be declared as signed
• Integer numbers in any radix can be declared as signed
• Operands can be converted from unsigned to signed
• Arithmetic shift operators have been added

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

10

The Verilog-1995 standard has a reserved keyword, signed, but this keyword was not used in
Verilog-1995. Verilog-2000 uses this keyword to allow reg data types, net data types, ports, and
functions to be declared as signed types. Some example declarations are:

reg signed [63:0] data;
wire signed [7:0] vector;
input signed [31:0] a;
function signed [128:0] alu;

In Verilog-1995, a literal integer number with no radix specified is considered a signed value, but
a literal integer with a radix specified is considered an unsigned value. Verilog-2000 adds an
additional specifier, the letter ‘s’, which can be combined with the radix specifier, to indicate that
the literal number is a signed value.

16'hC501 //an unsigned 16-bit hex value
16'shC501 //a signed 16-bit hex value

In addition to being able to declare signed data types and values, Verilog-2000 adds two new
system functions, $signed and $unsigned. These system functions are used to convert an
unsigned value to signed, or vice-versa.

reg [63:0] a; //unsigned data type
always @(a) begin
result1 = a / 2; //unsigned arithmetic
result2 = $signed(a) / 2; //signed arithmetic

end

One more signed arithmetic enhancement in Verilog-2000 is arithmetic shift operators,
represented by >>> and <<< tokens. An arithmetic right-shift operation maintains the sign of a
value, by filling with the sign-bit value as it shifts. For example, if the 8-bit variable D contained
8’b10100011, a logical right shift and an arithmetic right shift by 3 bits would yield the
following:

D >> 3 //logical shift yields 8'b00010100
D >>> 3 //arithmetic shift yields 8'b11110100

Synopsys Support:
 planned for

 VCS 6.0 VCS 6.1 PRESTO 2000.11 PRESTO 2001.08
 no yes no yes

3.08 Power operator
Verilog-2000 adds a power operator, represented by an ** token. This operator performs the
same functionality as the C pow() function. It will return a real number if either operand is a real
value, and an integer value if both operands are integer values. One practical application of the

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

11

power operator is to calculate values such as 2n. The example for constant functions, in section
3.03, uses the power operator to determine the address vector width required to address a given
memory size.

Synopsys Support:

 planned for
 VCS 6.0 VCS 6.1 PRESTO
 no yes yes

3.09 Re-entrant tasks and recursive functions
Verilog-2000 adds a new keyword, automatic. This keyword can be used to declare an
automatic task that is re-entrant. All task declarations within an automatic task are allocated
dynamically for each concurrent task entry. A function can also be declared as automatic, which
allows the function to be called recursively (declarations within the function will be allocated
dynamically for each recursive call). Declarations within an automatic task or function can not
be accessed by hierarchical references.

A task or function that is declared without the automatic keyword behaves as Verilog-1995 tasks
and functions, which are static. All declared items in a static task or function are statically
allocated, and are shared by all calls to the task or function.

The following example illustrates a function which recursively calls itself in order to find the
factorial (n!) of a 32-bit unsigned integer operand.

function automatic [63:0] factorial;
input [31:0] n;
if (n == 1)
factorial = 1;

else
factorial = n * factorial(n-1);

endfunction

Synopsys Support:

 planned for
 VCS 6.0 VCS 6.1 PRESTO
 no maybe no

3.10 Combinational logic sensitivity token
To properly model combinational logic using a Verilog always procedure, the sensitivity list
must include all input signals used by that block of logic. In large, complex blocks of

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

12

combinational logic, it is easy to inadvertently omit an input from the sensitivity list, which can
lead to simulation and synthesis mismatches.

Verilog-2000 adds a new wild card token, @*, which represents a combinational logic sensitivity
list. The @* token indicates that the simulator or synthesis tool should automatically be
sensitive to any values used by the procedure in decisions or in expressions on the right-hand side
of assignment statements. In the following example, the @* token will cause the procedure to
automatically be sensitive to changes on sel, a or b.

always @* //combinational logic sensitivity
if (sel)
y = a;

else
y = b;

Synopsys Support:
 planned for

 VCS 6.0 VCS 6.1 PRESTO
 no yes yes

3.11 Comma-separated sensitivity lists
Verilog-2000 adds a second way to list signals in a sensitivity list, by separating the signal names
with commas instead of the or keyword. The following two sensitivity lists are functionally
identical:

always @(a or b or c or d or sel)
always @(a, b, c, d, sel)

The new, comma-separated sensitivity list does not add any new functionality. It does, however,
make Verilog syntax more intuitive, and more consistent with other signal lists in Verilog.

Synopsys Support:

 planned for
 VCS 6.0 VCS 6.1 PRESTO
 no yes yes

3.12 Enhanced file I/O
Verilog-1995 has very limited file I/O capability built into the Verilog language. Instead, file
operations are handled through the Verilog Programming Language Interface (PLI), which gives

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

13

access to the file I/O libraries in the C language. Verilog-1995 file I/O also limits the number
files it can open at the same time to, at most, 31.

Verilog-2000 adds several new system tasks and system functions, which provide extensive file
I/O capability directly in the Verilog language, without having to create custom PLI applications.
In addition, Verilog-2000 increases the limit of the number of files that can be open at the same
time to 230. The new file I/O system tasks and system functions in Verilog-2000, listed
alphabetically, are: $ferror, $fgetc, $fgets, $fflush, $fread, $fscanf, $fseek, $fsscanf, $ftel,
$rewind, $sformat, $swrite, $swriteb, $swriteh, $swriteo, and $ungetc. Note that Verilog-
2000 will limit the number of files that can be opened using the original (default) $fopen syntax
to, at most, 30 files, one less than the Verilog-1995 standard. This may pose a minor backward
compatibility problem, but the IEEE standards group felt the new syntax for $fopen which can
open an almost unlimited number of files was worth the trade-off.

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 no yes no

Note that VCS 5.2 and earlier versions of VCS could implement much of the new file I/O system
tasks and functions using the Verilog PLI. In fact, a Synopsys applications engineer has made
sample file I/O PLI applications available on his personal web site for many years at
www.chris.spear.net/pli .

3.13 Automatic width extension beyond 32 bits
With Verilog-1995, assigning an unsized high-impedance value (e.g.: ‘bz) to a bus that is greater
than 32 bits would only set the lower 32 bits to high-impedance. The upper bits would be set to
0. To set the entire bus to high-impedance requires explicitly specifying the number of high
impedance bits. For example:

Verilog-1995:
parameter WIDTH = 64;
reg [WIDTH-1:0] data;
data = 'bz; //fills with 'h00000000zzzzzzzz
data = 64'bz; //fills with 'hzzzzzzzzzzzzzzzz

The fill rules in Verilog-1995 make it difficult to write models that are easily scaled to new
vector sizes. Redefinable parameters can be used to scale vector widths, but the Verilog source
code must still be modified to alter the literal value widths used in assignment statements.

Verilog-2000 changes the rule for assignment expansion so that an unsized value of Z or X will
automatically expand to fill the full width of the vector on the left-hand side of the assignment.

Verilog-2000:
parameter WIDTH = 64;

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

14

reg [WIDTH-1:0] data;
data = 'bz; //fills with 'hzzzzzzzzzzzzzzzz

This Verilog-2000 enhancement that is not backward compatible with Verilog-1995. However,
the IEEE standards group felt the Verilog-1995 behavior was a bug in the standard that needed to
be corrected. It is expected that all existing models with greater than 32-bit busses have avoided
this bug by explicitly specifying the vector sizes. Therefore, there should not be any
compatibility problems with existing models.

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 no no no

3.14 Explicit parameter passing by name
Verilog-1995 has two methods of redefining parameters within a module instance: explicit
redefinition using defparam statements, and in-line implicit redefinition using the # token as part
of the module instance. The latter method is more concise, but because it redefines parameters
by their declaration position, it is error-prone and is not self-documenting. The following
example illustrates the two Verilog-1995 methods for parameter redefinition.

module ram (...);
parameter WIDTH = 8;
parameter SIZE = 256;
...

endmodule

module my_chip (...);
...
//Explicit parameter redefinition by name
RAM ram1 (...);
defparam ram1.SIZE = 1023;

//Implicit parameter redefinition by position
RAM #(8,1023) ram2 (...);

endmodule

Verilog-2000 adds a third method to redefine parameters, in-line explicit redefinition. This new
method allows in-line parameter values to be listed in any order, and document the parameters
being re-defined.

//In-line explicit parameter redefinition
RAM #(.SIZE(1023)) ram2 (...);

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

15

 yes yes yes

3.15 Sized Parameters
In the Verilog-1995 standard, the size of parameters is not specified. Instead, the parameter
defaults to the size of the original value assigned to it. Verilog-1995 does not require or specify a
syntax for sized parameter definitions, but most Verilog simulators support the syntax as a
defacto standard. Verilog-2000 specifies syntax for sized parameters, but does not require it to
be used. The following example illustrates the usage of sized parameter definition.

parameter [2:0]
IDLE = 3'd0,
READ = 3'd1,
LOAD = 3'd2,
SYNC = 3'd3,
ERROR = 3'd4;

Synopsys Support:
 planned for

 VCS 6.0 VCS 6.1 PRESTO
 no yes yes

Some Synopsys tools have made use of sized parameters for years. Synopsys finite state machine
(FSM) compiler has required that state vectors defined in a parameter list be made with sized
parameters, as illustrated in the example above. The Verilog-2000 syntax for sized parameters is
the same as that of Synopsys FSM.

3.16 Combined port and data type declarations
Verilog requires that signals connected to the input or outputs of a module have two declarations:
the direction of the port, and the data type of the signal. In Verilog-1995, these two declarations
had to be done as two separate statements. Verilog-2000 adds a simpler syntax, by combining
the declarations into one statement.

module mux8 (y, a, b, en);
output reg [7:0] y;
input wire [7:0] a, b;
input wire en;

Synopsys Support:

 planned for
 VCS 6.0 VCS 6.1 PRESTO 2000.11 PRESTO 2001.08
 yes yes no yes

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

16

3.17 ANSI-style input and output declarations
Verilog-1995 uses the older Kernighan and Ritchie C language syntax to declare module ports,
where the order of the ports is defined within parentheses, and the declarations of the ports are
listed after the parentheses. Verilog-1995 tasks and functions omit the parentheses list, and use
the order of the input and output declarations to define the input/output order.

Verilog-2000 updates the syntax for declaring inputs and outputs of modules, tasks, and
functions to be more like the ANSI C language. That is, the declarations can be contained in the
parentheses that show the order of inputs and outputs.

module mux8 (output reg [7:0] y,

input wire [7:0] a,
input wire [7:0] b,
input wire en);

function [63:0] alu (

input [63:0] a,
input [63:0] b,
input [7:0] opcode);

Synopsys Support:
 planned for
 VCS 6.0 VCS 6.1 PRESTO 2000.11 PRESTO 2001.08
 yes yes no yes

3.18 Reg declaration initial assignments
Verilog-2000 adds the ability to initialize variables at the time they are declared, instead of
requiring a separate initial procedure to initialize variables. The initial value assigned to the
variable will take place within simulation time zero, just as if the value had been assigned within
an initial procedure.

Verilog-1995:
reg clock;
initial
clk = 0;

Verilog-2000:
reg clock = 0;

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

17

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 yes yes no

Presto does not support this construct, but this is not an issue, since this construct is not intended
as a synthesis construct anyway. Its primary usage is for test benches and behavioral modeling.

3.19 Implicit nets with continuous assignments
Verilog-1995 will infer a net data type for an undeclared signal on the left-hand side of a
continuous assignment only if the signal name is also connected to a port of that module. If the
signal is not connected to a port, the Verilog-1995 considers the signal as undeclared. Verilog-
2000 extends the implicit net declaration to include any signal on the left-hand side of a
continuous assignment. If the signal is connected to a module port of the module, then the
implicit net will default to the vector width of the port. If the signal is not connected to a port,
the it will default to the vector width of the expression on the right-hand side of the assignment.

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 unkown unkown unkown

3.20 Disabling implicit net declarations
Verilog-1995 will infer a net data type any time an undeclared signal is connected to a module
port, a module instance, or a primitive instance. Implicit nets can be convenient, in that it saves
having to declare every signal used within a module. However, implicit nets can also lead to
unintentional bugs in a design, when a signal name is spelled incorrectly. The incorrect name is
not a syntax error, it just infers a new signal has been created. Verilog-2000 adds a means to
disable implicit net declarations, so that all signals must be explicitly declared. Disabling
implicit nets is done using a new argument of none for the already existing compiler directive,
`default_nettype. The word “none” is not a reserved word, it is simply an argument
value.

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 unknown unknown unknown

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

18

3.21 Enhanced conditional compilation
Verilog-1995 supports conditional compilation, using the `ifdef, `else, and `endif compiler
directives. Verilog-2000 adds more extensive conditional compilation control, with `ifndef,
`elsif and `undef compiler directives.

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 yes yes yes

3.22 File and line compiler directive
Verilog tools need to keep track of the line number and the file name of Verilog source code.
This information can be used for error messages, and can be accessed by the Verilog PLI. If
Verilog source is pre-processed by some other tool, however, the line and file information of the
original source code can be lost. Verilog-2000 adds a `line compiler directive, which can be
used to specify the original source code line number and file name. This allows the location in
an original file to be maintained if another process modifies the source, such as by adding or
removing lines of source text.

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 no no no

3.23 Attributes
The Verilog language was originally created as a hardware description language for digital
simulation. As tools other than simulation have adopted Verilog as a source input, there has been
a need for these tools to be able to add tool-specific information to the Verilog language. In
Verilog-1995, there was no mechanism for adding tool-specific information, which led to non-
standard methods, such as hiding synthesis commands in Verilog comments.

Verilog-2000 adds a mechanism for specifying properties about objects, statements, and groups
of statements in the HDL source. These properties are referred to as attributes. Attributes may
be used by various tools, including simulators, to control the operation or behavior of the tool.
An attribute is contained within the tokens (* and *). Attributes can be associated with all
instances of an object, or with a specific instance of an object. The attribute can appear as a
prefix to a declaration, a module, a statement, or a port connection. It can also appear as a suffix
to an operator or a function name in an expression. Attributes can be assigned values, including
strings, and attribute values can be re-defined for each instance of an object.

Verilog-2000 does not define any standard attributes. The names and values of attributes will be
defined by tool vendors or other standards. An example of how a synthesis tool might use
attributes is shown below:

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

19

(* parallel case *) case (1'b1) //1-hot FSM
state[0]: ...
state[1]: ...
state[2]: ...

endcase

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 no no no

3.24 Array of Instances
The feature, Array of Instances, is part of the Verilog-1995 standard, and is not new with the
Verilog-2000 update. It is noted here because it has not been supported by either VCS or the
Synopsys synthesis Verilog reader in the past. The following example creates an array of
instances of dff modules.

module RegN (out, in, clk, rst);

parameter N = 16;
output [N-1:0] out;
input [N-1:0] in;
input clk, rst;

dff i[N-1:0] (out, in, clk, rst);
endmodule

Synopsys Support:
 VCS 5.2 VCS 6.0 VCS 6.1 PRESTO
 yes yes yes yes

3.25 “Register” changed to “variable”
Since the inception of Verilog in 1984, the term “register” has been used to describe the group of
variable data types in the Verilog language. “Register” is not a keyword, it is simply a name for a
class of data types, namely: reg, integer, time, real, and realtime. The use of term “register” is
often a source of confusion for new users of Verilog, who sometimes assume that the term
implies a hardware register (flip-flops). The IEEE 1364-2001 Verilog Language Reference
Manual replaces the term “register” with the more intuitive term “variable”. This is a
terminology change in Verilog reference documentation only, and does not affect any simulator
or synthesis tool.

Synopsys Support:
 VCS 6.0 VCS 6.1 PRESTO
 n/a n/a n/a

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

20

4.00 ASIC/FPGA accuracy enhancements
The original Verilog language was created at a time when 2- to 5-micron designs were common.
As silicon technologies and design methodologies have changed, the Verilog language has
evolved as well. Verilog-2000 continues this evolution, with enhancements specific for
today’s—and tomorrow’s—deep-submicron designs.

These enhancements are directed toward gate level modeling, as used by ASIC and FPGA
vendors to model their libraries. This paper focuses on the behavioral and RTL enhancements of
Verilog-2000. The ASIC/FPGA enhancements are beyond the scope of this paper.

5.00 PLI enhancements
Verilog-2000 includes numerous updates to the Verilog Programming Language Interface portion
of the Verilog standard. These changes fall into three primary groups:
• New features added to the PLI;
• Implementation of PLI support for all enhancements added to the Verilog language for Verilog-

2000;
• Clarifications to the Verilog-1995 PLI standard.

The focus of this paper is on the behavioral and RTL enhancements of Verilog-2000. Details on
the enhancements to the PLI are beyond the scope of this paper.

6.00 References
1. IEEE Std 1364-1995, IEEE Standard Hardware Description Language Based on the Verilog®

Hardware Description Language. The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA. ISBN 1-55937-727-5.

2. IEEE Std p1364-2001, IEEE Standard Hardware Description Language Based on the
Verilog® Hardware Description Language. The Institute of Electrical and Electronics
Engineers, Inc., 345 East 47th Street, New York, NY 10017-2394, USA. (ISBN not yet
assigned).

3. IEEE Std p1497-1999, Standard for Standard Delay Format (SDF) for the Electronic Design
Process. The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street, New
York, NY 10017-2394, USA. (ISBN not yet assigned).

7.00 Summary
The Verilog-2000 standard is finished, and the IEEE balloting process has been completed. The
final step for the standard is approval by the IEEE Revcom which is expected to take place in
March 2001. The official title for the Verilog-2000 standard will be “IEEE Std. 1364-2001”.
Verilog-2000 adds many important enhancements to the Verilog language. These enhancements,
which provide powerful constructs for writing re-usable, scalable models, Intellectual Property

SNUG Europe 2001 Getting the Most out of the
 IEEE 1364-200 Verilog Standard

21

modeling, and very deep-submicron timing accuracy. Engineers who design with Verilog will
receive significant benefit from these enhancements. Many of these new features are now
available for use with the Synopsys VCS 6.0 simulator and Presto synthesis reader. VCS 6.1 will
implement even more of the Verilog-2000 enhancements.

8.00 About the Authors:
Stuart Sutherland is the founder and president of Sutherland HDL Inc., a company that
specializes in Verilog HDL and Verilog PLI training and design consulting. Mr. Sutherland is
chairman of the IEEE 1364 PLI task force for the Verilog-2000 standard and editor of the PLI
sections of the 1364-2001 Verilog language reference manual.

Don Mills is the founder and president of LCDM Engineering, a company that specializes in
Verilog training, VHDL training, and design consulting. Mr. Mills has 15 years experience with
ASIC design, and has worked with Synopsys tools since version 1.2.

