
Modeling with SystemVerilog
in a Synopsys Synthesis Design Flow

Using Leda, VCS, Design Compiler and Formality

Stuart Sutherland
Sutherland HDL, Inc.

stuart@sutherland-hdl.com

ABSTRACT

SystemVerilog is important to design engineers. It can significantly reduce the number of lines of RTL code
needed to model complex hardware. This allows hardware designers to be more productive, and reduces
the risk of coding errors. The challenge for designers, however, is determining which aspects of
SystemVerilog are synthesizable and work with all tools used in a synthesis design flow. SystemVerilog
adds hundreds of extensions to the Verilog language. Some of these extensions are intended to represent
hardware behavior, while other extensions are intended for testbench programming or abstract system
level modeling. This paper presents the synthesis subset of SystemVerilog currently supported by Synopsys
EDA tools, specifically Leda, VCS, Design Compiler and Formality. The paper reflects discussions with
internal Synopsys R&D groups, in order to accurately define a common synthesis subset that is portable
across these key design and verification tools.

Table of Contents
1.0 Introduction ... 2
2.0 Shared declaration spaces ... 4
3.0 Enhancements to Verilog data types ... 5

3.1 Type definitions (typedef) ...5
3.2 New variable types ..5
3.3 Enumerated types ..6
3.4 Structures ..7
3.5 Unions ...8
3.6 Casting ..10
3.7 Parameter and localparam constants ...10
3.8 const constants ..10

4.0 Data arrays .. 11
4.1 Packed arrays ..11
4.2 Unpacked arrays ..11

5.0 Module ports ... 12
6.0 Operators ... 12
7.0 Procedural blocks .. 13
8.0 Programming statements ... 14

8.1 Variables on the left-hand side of continuous assignments ..14
8.2 Enhanced for loop declarations ...15
8.3 unique and priority decision modifiers ...16
SNUG Europe 2006 1 SystemVerilog in a Synopsys Synthesis Design Flow

8.4 break, continue and return jump statements ..18
9.0 Task and function enhancements .. 19
10.0 Interfaces ... 20
11.0 Module and interface instances ... 21
12.0 Assertions .. 21
13.0 Miscellaneous enhancements .. 22
14.0 Keyword support ... 22
15.0 Recommendations ... 23

15.1 Additional synthesizable constructs ..23
15.2 Packages ..24
15.3 uwire single driver nets ...24

16.0 Summary ... 25
17.0 References ... 25
18.0 Acknowledgements ... 26
19.0 Contacting the author .. 26

1. Introduction
Using the SystemVerilog synthesis constructs enables engineers to model more functionality, reduce
coding errors, and get successful silicon to market more quickly. There are important, and exciting reasons
for why design engineers should use the SystemVerilog extensions to Verilog in their synthesizable
designs. Some of these reasons are:

• A reduction in the amount of code that needs to be written, and thereby a reduction in the number of
coding errors.

• The ability to represent complex functionality in concise, easier-to-read, easier-to-reuse RTL code.
• A dramatic reduction in the risk of mismatches in pre-synthesis RTL functionality and post-synthesis

gate-level functionality.
• The ability to add white-box assertions to synthesizable code, without convoluted synthesis

translate_off and translate_on pragmas
• A common language used throughout the design flow, including in synthesizable RTL models, test

programs, bus-functional models and reference models.

The SystemVerilog extensions leverage proven modeling and verification constructs from several
languages, including SUPERLOG, C++, SystemC, VHDL, VERA, OVA, OVL, PSL, and DirectC. The
sum is greater than the individual parts. By integrating the best of all these languages into one language,
design teams and verification teams can work with a single language, and software tools can execute the
entire design, test, assertions, and coverage using a single kernel. The overhead of working with, and
executing, multiple languages—some public and some proprietary—is eliminated. All of this integrated
functionality is fully backward compatible with legacy Verilog code, and as such, can still be used in
environments that currently use a mix of Verilog, VHDL and/or Verilog PLI applications. SystemVerilog
also defines new APIs (Application Programming Interfaces) to make it much easier to integrate
SystemVerilog models with SystemC models, and to extract and process functional coverage and assertion
coverage information.

The SystemVerilog extensions to the Verilog HDL address two major engineering needs: 1) to efficiently
model designs of ever increasing complexity and size, and 2) to effectively verify these complex designs.
In each of these areas, SystemVerilog adds several dozen significant, extensions to Verilog. This paper
focusses on the hardware modeling extensions to Verilog. In a typical design flow, hardware models must
be written so as to be compatible with both simulation and synthesis compilers, as well as other software
tools that might also be used in the design process.
SNUG Europe 2006 2 SystemVerilog in a Synopsys Synthesis Design Flow

The Synopsys synthesizable subset is very rich and supports the most useful synthesizable constructs of
SystemVerilog. Synopsys has done a good job of co-coordinating among products to ensure a common
synthesis and verification subset that is supported throughout the implementation and verification flow.
However, it is not always easy for end users of these products to find out just what that subset is. Even once
the subset has been determined, there may still be uncertainties as to just how various Synopsys tools
interpret those SystemVerilog constructs. For example, the SystemVerilog “priority case” is
synthesizable. But, does it mean that VCS, DC and Formality will all evaluate the case statement in the
same way? (The answer to this question is in Section 8.3 of this paper).

There are a large number of SystemVerilog constructs that are supported in the Synopsys synthesis design
flow! Designers can—and should—be taking advantage of the subset listed in this paper!

This paper does not attempt to fully describe each SystemVerilog construct—that is the role of the IEEE
1800 SystemVerilog Language Reference Manual[1]. This paper only provides an overview of the
synthesizable SystemVerilog constructs using current (at the time of writing) versions of the following
Synopsys tools:

• Leda for design rule “lint” checking
• VCS for digital simulation
• Design Compiler (DC) for synthesis
• Formality for formal verification

A common synthesis design flow using these tools is:

In this tool flow, not all steps are necessary for all designs and design blocks. For example, it is common
not to run gate-level simulations after synthesis on an entire design. The main point being made in this tool
flow is to not put the proverbial “cart in front of the horse”. While it is possible, for example, to run DC
without having first used Leda and VCS, there are good reasons not to do so. Leda checks for, and helps
enforce, a coding style that prevents common mismatches between pre-synthesis RTL functionality and
post-synthesis gate-level functionality. Leda also helps ensure accurate equivalence checking between pre-
synthesis RTL models and post-synthesis gate-level models. In addition, both Leda and VCS can see the
“big picture” by reading in all the modules that make up the complete design, whereas a common usage of
DC is to synthesize one design block at a time. DC cannot perform the same semantic checks on Verilog
and SystemVerilog constructs that cross module boundaries.

Unless otherwise noted, the constructs presented in this paper are supported in released—or soon to be
released—versions of these products at the time this paper was written (24 March 2006). This paper only
presents the synthesizable synthesis constructs that are portable to all the Synopsys tools used in a typical
synthesis design flow. Support for additional constructs may be added in future releases.

About the examples. The examples shown in this paper are not intended to show real-life design code.
The examples are contrived to show specific SystemVerilog constructs in a small amount of code. All
examples are synthesizable, but might not use an RTL style that will realize the most efficient hardware.
Many of the earlier examples use SystemVerilog constructs that are not explained in detail until later in the

RTL code
generation

Leda
(design rule
checking)

VCS
(RTL

simulation)
DC

(synthesis)

VCS
(gate-level
simulation)

Formality
(formal

verification)
SNUG Europe 2006 3 SystemVerilog in a Synopsys Synthesis Design Flow

paper. Verilog and SystemVerilog keywords are shown in bold text.

2. Shared declaration spaces
In the Verilog language, modules are self-contained design blocks. All data types, tasks and function used
by a module must be declared locally within the module. If the same definition is used in multiple
modules, the definition must be repeated within each module. SystemVerilog extends Verilog by adding a
new declaration space, $unit (some Synopsys tools refer to $unit as $root, which was a name used in
an early draft of the SystemVerilog standard).

$unit is a pseudo-global declaration space. Any declaration outside of a named declaration space falls in
the $unit space. In the following example, the definition for bool_t is outside of the two modules, and
therefore is in the $unit declaration space.

typedef enum logic {FALSE, TRUE} bool_t; // defined in $unit space

module alu (...);
bool_t success_flag; // reference to definition in $unit space
...

endmodule

module decoder (...);
bool_t a_ok; // reference to definition in $unit space
...

endmodule

The synthesizable items that $unit can contain are:

• parameter and localparam constant definitions (discussed in Section 3.7)
• const variable definitions (discussed in Section 3.8)
• typedef user-defined types (discussed in Section 3.1)
• Fully automatic task and function definitions (discussed in Section 9)

File order dependencies. $unit is automatically visible to all design (and verification) blocks that are
compiled at the same time. However, SystemVerilog requires that items defined in $unit must be declared
before they are referenced in the design modules. When $unit declarations are defined in one design file,
and referenced in a different design file, care must be taken to compile the files in the correct order.

Differences between VCS and DC: Each invocation of a compiler creates a new $unit declaration
space that is unique to that compilation. Declarations in the $unit created by one compilation are not
visible in the $unit created by another compilation. A common usage of VCS is to compile and simulate
multiple design blocks together. In this usage, there is a single $unit declaration space which is shared by
all design blocks. On the other hand, a common usage of DC is to synthesize each design block separately
(or perhaps a small number of blocks at a time). In this usage, multiple $unit declaration spaces are
created, which are not shared. Because of this difference, care must be taken as to where $unit
declarations are made, so that both VCS and DC will see the same information.

Modeling guideline. Sutherland HDL uses the following modeling style to help ensure that both VCS
and DC see the same declarations in $unit.

1. Place all definitions that are to be in the $unit declaration space in a single file, separate from
the design files. At the top of this declarations file, add a conditional compilation check to pre-
vent the definitions in the file from being read in more than once in the same compilation. The
SNUG Europe 2006 4 SystemVerilog in a Synopsys Synthesis Design Flow

file sets a ‘define macro definition as a flag that the file has been compiled: For example:
// In a file named "declarations.unit"
`ifndef DEFS_COMPILED // check flag to see if already compiled

`define DEFS_COMPILED // flag that is set when this file is compiled
typedef enum logic {FALSE, TRUE} bool_t;
typedef struct {logic a; integer b;} packet_t;

`endif

2. At the beginning of each design file, add the following ‘include compiler directive:
`include "./declarations.unit" // include $unit definitions
...

Note that in the example above the file containing the shared declarations does not end with “.v” (a
common way to denote Verilog source code) or “.sv” (a common way to denote SystemVerilog source
code). This is to help make it obvious that this file is not stand-alone code that can be compiled separately.

Using this modeling guideline, each file read in by Leda, VCS, DC, Formality or other design/verification
tools will automatically include the exact same $unit definitions. Within the file containing the $unit
definitions, conditional compilation is used to first check to see if the shared declarations already exist in
the current $unit space. If not, the declarations are included in the compilation. If multiple files are
compiled together (a common usage of Leda and VCS), only the first file read in will compile the
declarations file into the $unit space; All subsequent files read in will see the DEFS_COMPILED flag,
indicating that the definitions already exist in the current $unit space. If each file is compiled separately
(a common usage of DC), each compilation will create a new $unit space, and the exact same definitions
will be included in each $unit compilation space.

3. Enhancements to Verilog data types
SystemVerilog extends the synthesizable Verilog HDL data types in several significant ways.

3.1 Type definitions (typedef)

SystemVerilog allows designers to create user-defined data types using typedef, similar to C.

typedef integer unsigned uint_t;

uint_t u; // a variable of type uint_t

typedef enum logic {FALSE, TRUE} bool_t;

bool_t A_OK; // a variable of type bool_t

typedef struct {
logic [3:0] check;
logic [63:0] data;

} data_word_t;

data_word_t dword; // variable of data_word_t type

3.2 New variable types

Verilog has the reg variable type, which can be used to create bit-vectors of any vector size. Verilog also
has the integer and time types, which represent 32-bit signed and 64-bit unsigned integer storage,
respectively. SystemVerilog extends the synthesizable of variables with several new types:
SNUG Europe 2006 5 SystemVerilog in a Synopsys Synthesis Design Flow

logic — a 4-state variable with a user-defined vector width. logic is a synonym for reg. The two
keywords are interchangable.

bit — a 2-state variable with a user-defined vector width. The bit type can be used any place a Verilog
reg type can be used, but will never contain a logic Z or X value.

byte — 2-state signed variable with a fixed size of 8 bits

shortint — 2-state signed variable with a fixed size of 16 bits

int — 2-state signed variable with a fixed size of 32 bits

longint — 2-state signed variable with a fixed size of 64 bits

Some example declarations are:

logic reset; // 1-bit 4-state unsigned variable; same as reg

logic [47:0] data; // 48-bit 4-state unsigned variable

bit master_clock; // 1-bit 2-state unsigned variable

int i; // 32-bit 2-state signed variable

Potential RTL versus gate-level mismatch. Two-state data types within an RTL model will never
have a logic Z or X value. If a value with Z or X bits is assigned to a 2-state type, those bits will map to 0.
Synthesis does not preserve this 2-state semantics. In the gate-level models after synthesis, variables
become a wire type, which will propagate Z or X values, rather than map the values to 0.

Modeling guideline. Sutherland HDL recommends in our training and consulting services to use 4-state
types in synthesizable models. 4-state types will not hide design problems by masking X values, and will
have the same simulation semantics as the post-synthesis net types. An exception to this guideline is the
use of the 2-state int type as a for-loop control variable. Loop control variables generally disappear in
post-synthesis gate-level models, and do not have a risk of RTL versus gate-level functionality
mismatches.

3.3 Enumerated types

Enumerated types allow variables and nets to be defined with a specific set of named values. The basic
syntax for declaring an enumerated type is:

enum {WAITE, LOAD, READY} State; // a variable that has 3 legal values

Enumerated types have a base data type, which by default is int (a 2-state, 32-bit type). In the example
above, State is an int type, and WAITE, LOAD and READY will have 32-bit int values. When an
enumerated type variable using the default base type is compiled, DC reports the warning:

Using default enum base size of 32

SystemVerilog goes beyond the abstract C- and VHDL-like declaration above. With SystemVerilog, design
engineers can specify an explicit base type, allowing enumerated types to more accurately represent
hardware. An example is:

enum logic [2:0] {WAITE, LOAD, READY} State; // 4-state, 3-bit variable

The value labels in the enumerated list are constants that have an associated logic value. By default, the
first label in the enumerated list has a value of 0, and each subsequent label is incremented by one. Thus, in
the example above, WAITE is 0, LOAD is 1, and READY is 2.

SystemVerilog also allows design engineers to specify explicit values for any or all of the labels in the
SNUG Europe 2006 6 SystemVerilog in a Synopsys Synthesis Design Flow

enumerated list, again more accurately representing real hardware. For example:

// enumerated variable with one-hot values
enum logic [2:0] {WAITE = 3’b001,

LOAD = 3’b010,
READY = 3’b100} State;

Enumerated types can be named types or anonymous types. Named types are defined using typedef.

typedef enum logic {FALSE, TRUE} bool_t; // named type enumerated variable
bool_t done;

enum logic [1:0] {A, B, C} State; // anonymous enumerated variable

Modeling guideline. Use typedef to define all enumerated variables. Software tools can perform
stronger type checking on named type enumerated variables

Potential RTL versus gate-level mismatch. Enumerated types defined using the default base type
and label values are abstract modeling constructs, which do not have the same semantics as hardware. The
default base type is int, which is a 2-state type. DC will map this base type to simple wires (possibly also
optimizing out unused bits), which are 4-state types with different simulation semantics. Also, at the RTL
level, enumerated types document a legal set of values. After synthesis, an enumerated type is a simple net
vector, which no longer has any special semantics that limit the legal set of values that can appear on that
net. Another possible cause of RTL versus gate-level mismatches is the difference in the values used to
represent the enumerated labels. If explicit values for each label are not specified, synthesis might change
the values that represent the labels. The values of the labels will not match between pre-synthesis RTL
functionality and post-synthesis gate-level functionality.

Modeling guideline. To reduce the risk of RTL versus gate-level functionality mismatches, all
enumerated types used in models that will be synthesized should be explicitly defined as a logic type (4-
state) and the values of all enumerated labels should be explicitly defined.

3.4 Structures

SystemVerilog structures provide a mechanism to collect multiple net and variable declarations together
under a common name. Structures are synthesizable, provided the types used within the structure are
synthesizable. Structures can be named types (using typedef) or anonymous types. For example:

struct { // anonymous structure variable
opcode_t opcode;
int a, b;

} alu_instruction_s;

typedef struct { // named structure type
logic [3:0] parity;
logic [63:0] data_word;

} data_word_t;

data_word_t data; // variable of data_word_t type

The members of a structure can be referenced individually, or as a whole. The entire structure can be
assigned using a list of values, enclosed in { }. The list can contain default values for one or more
members of the structure. The following examples use the data structure variable declared above.

data.data_word = alu_out; // assign to structure member

data = {15,0}; // assign list of values to entire structure
SNUG Europe 2006 7 SystemVerilog in a Synopsys Synthesis Design Flow

data = {default:1}; // assign same value to all structure members

Note: The use of { } to enclose a list of values was defined in the Accellera version of the SystemVerilog
standard. The IEEE 1800 SystemVerilog standard deprecates this syntax, because it is too easily confused
with the Verilog concatenation operator. The IEEE standard uses a slightly different syntax of '{ } for
value lists. The older syntax, is the style that is portable across tools in a Synopsys synthesis design flow.

Note: Value lists will not be supported in the full Synopsys synthesis design flow until later in 2006.

Unpacked and packed structures. By default, the members of a structure are “unpacked”, which
allows software tools to store structure members as independent objects. Structures can be explicitly
defined as “packed”, indicating that the members of the structures must be stored as contiguous bits.
Packed structures are a bit vector, and can be used as a vector in operations. Bits of a packed structure can
be referenced by member name, or by an index.

typedef struct packed { // packed structure -- 64 bits
logic [15:0] source_port;
logic [15:0] destination_port;
logic [31:0] data_sequence;

} tcp_t;

tcp_t data_in, data_out, data_check; // structure variables

assign data_check = data_in ^ data_out; // operation on packed structures

Modeling guideline. Structures should not be declared as packed unless necessary. When a structure is
packed, software tools cannot perform as much type checking as can be performed on each member
separately. The appropriate usage of packed structures is when a structure needs be used as a whole in
operations or the structure will be used in a union (see Section 3.5).

Note: DC changes a structure port to a single port made up of a concatenation of the structure members.
Section 5, on module ports, discusses this in more details.

3.5 Unions

SystemVerilog unions allow a single storage space to represent multiple storage formats. SystemVerilog
has three types of unions: a simple union, a packed union, and a tagged union. Only packed unions are
synthesizable in the Synopsys tool flow (simple unions and tagged unions are used in testbench and
abstract modeling). Packed unions require that all members within the union be packed types of the same
number of bits. Packed types are bit-vectors (also known as packed arrays), integer types, and packed
structures. Because all members within a packed union are the same size, it is legal to write to one member
(format) of the union, and read back the data from a different member (format).

The following example illustrates the use of structures and unions. The example is a complete model of a
optical network data register that uses the UNI/NNI switch protocol. A union is used to represent the
storage of a cell, which can be in either a UNI cell, or an NNI cell. The UNI and NNI cells are modeled as
packed structures that are 424 bits wide. The register can store 32 data cells. Each register location is
represented as a structure that contains the packet union plus a flag bit that indicates which type of packet
is stored in the union. The entire register is passed back out of the model as an array of structures.

// $unit space declarations
`ifndef DEFS_COMPILED // check flag to see if already compiled

`define DEFS_COMPILED // flag that is set when this file is compiled

typedef struct packed { // UNI cell structure definition
logic [3:0] GFC;
SNUG Europe 2006 8 SystemVerilog in a Synopsys Synthesis Design Flow

logic [7:0] VPI;
logic [15:0] VCI;
logic CLP;
logic [2:0] T;
logic [7:0] HEC;
logic [0:47] [7:0] Payload; // packed array of 48 8-bit data words

} uni_t;

typedef struct packed { // NNI cell structure definition
logic [11:0] VPI;
logic [15:0] VCI;
logic CLP;
logic [2:0] PT;
logic [7:0] HEC;
logic [0:47] [7:0] Payload; // packed array of 48 8-bit data words

} nni_t;

typedef union packed { // union to store either UNI cell or NNI cell
uni_t uni_cell;
nni_t nni_cell;

} cell_t;

// Flag for what packet type is loaded in the packet register
typedef enum logic {is_uni=1'b0, is_nni=1'b1} packet_type_t;

typedef struct { // structure to store a packet union plus a flag
packet_type_t packet_type;
cell_t data_cell;

packet_t;
`endif
// End of $unit declaration space

module packet_register
(input logic clk,
input logic reset,
input logic load_en,
input packet_type_t packet_type, // enumerated type as input port
input cell_t data_cell, // union type as input port
input logic [4:0] write_pointer,
output packet_t packet_reg [0:31] // array of structures output port

);

// Write inputs into the register at address of write_pointer
always_ff @(posedge clk or posedge reset)

if (reset)
packet_reg = {default:0}; // load entire array with 0

else if (load_en) begin
packet_reg[write_pointer].packet_type <= packet_type;
if (packet_type == is_uni)
packet_reg[write_pointer].data_cell.uni_cell <= data_cell.uni_cell;

else
packet_reg[write_pointer].data_cell.nni_cell <= data_cell.nni_cell;

end
endmodule
SNUG Europe 2006 9 SystemVerilog in a Synopsys Synthesis Design Flow

3.6 Casting

SystemVerilog adds a cast operator to Verilog, ’(). There are three types of cast operations, all of which
are synthesizable:

• Type casting, e.g.: sum = int'(a * 16'h3);
• Size casting, e.g.: sum = 16'(a + 16'h3);
• Sign casting, e.g.: sum = signed'(a) + signed'(b);

One application of type casting is to assign the result of an operation to an enumerated type variable.
Enumerated types are semi-strongly typed; only a value of the same enumerated type can be assigned to an
enumerated variable. For example:

typedef enum logic [1:0] {s0=2'b00, s1=2'b01, s2=2'b10, s3=2'b11} states_t;
states_t state, next_state;

always_latch
if (enable)

next_state = states_t'(state + 1);

Note: Casting can force an out-of-range value into an enumerated variable. The design code needs to
prevent illegal conditions, or check that illegal conditions never occur (a good usage of SystemVerilog
assertions). In the example above, the enumerated variable is defined as 2 bits wide, which can hold values
from 0 to 3. Enumerated labels are defined for all four possible values. When state has a value of 3,
incrementing that value will overflow and wrap back to a value of 0, which is a legal in-range value.

3.7 Parameter and localparam constants

SystemVerilog extends Verilog by allowing parameters and localparams to be declared in the shared
declaration spaces, $unit and packages. Parameters declared in these shared declaration spaces cannot be
redefined, making them equivalent to localparams.

SystemVerilog also extends Verilog parameter definitions to allow parametrizing data types. For example:

module adder #(parameter type dtype = int) // parameterized data type
(input dtype a, b,
 output dtype sum
);

assign sum = a + b;
endmodule

module top;
int a1, b1, r1;
logic [15:0] a2, b2, r2;

adder i1 (a1, b1, r1); // a 32-bit 2-state adder
adder #(.dtype(logic[15:0])) i2 (a2, b2, r2); // a 16 bit 4-state adder

endmodule

3.8 const constants

SystemVerilog adds a const constant, which allows declaring any variable type as read-only. A const
variable can be initialized to a value at the time of declaration, but cannot be changed afterwards. The
primary usage of const constants is in dynamic testbench programs and abstract, non-synthesizable
models. For synthesis purposes, a const constant is treated the same as a Verilog localparam constant.
The main difference in synthesizable code is that a const constant can also be declared in automatic
SNUG Europe 2006 10 SystemVerilog in a Synopsys Synthesis Design Flow

functions, where localparams are not allowed.

Note: The const construct will be fully supported in the Synopsys synthesis design flow later in 2006.

4. Data arrays
SystemVerilog extends the Verilog static array construct in several ways that are synthesizable.
(SystemVerilog also adds several types of dynamically sized arrays, which are not synthesizable).

4.1 Packed arrays

SystemVerilog refers to Verilog bit-vector and integer types as “packed arrays”, indicating that these types
are an array of bits, packed together contiguously. In Verilog, a bit-vector has a single dimension. Bits
within the vector can be referenced using a bit-select operator.

reg [31:0] data; // array of 32 contiguous bits

data[31] = 1'b1; // select a single bit

SystemVerilog allows bit-vectors (packed arrays) to be declared with multiple dimensions.

logic [1:0][1:0][7:0] bus; // array of 32 contiguous bits

A packed array with multiple dimensions is still a vector made up of contiguous bits. That vector, however,
is now divided into sub fields.

bus[1][0] = 8'hFF; // select single sub field
bus[1] = 16'b0; // select multiple sub fields
bus[1][1][7] = 1'b1; // select a single bit

Multidimensional packed arrays are synthesizable. Declaring sub fields within a array is just for RTL
modeling convenience. A packed array with multiple dimensions is still just a vector, and synthesizes to
the same gate-level implementation as a Verilog one-dimensional vector.

The example listed in Section 3.5 illustrates using a packed array to represent a UNI or NNI payload vector
that is 48 8-bit data words.

4.2 Unpacked arrays

SystemVerilog refers to Verilog arrays as “unpacked arrays”, indicating that each element of the array is a
separate variable or net that need not be stored contiguously. The synthesizable enhancements to unpacked
arrays are:

• Arrays of user-defined types
• Copying arrays
• Assigning a list of values to arrays as a whole (same syntax as assigning to unpacked structures)
• Assign a default value to an entire array
• Assigning to slices of an array
• Passing arrays through module ports (see Section 5)
• Passing arrays to tasks and functions (see Section 9)
• Array query system functions: $dimensions, $left, $right, $low, $high, $increment and

$size

The example listed in Section 3.5 illustrates using an unpacked array of user-defined types to represent a
register that can contain 32 cells, containing either UNI or NNI data cells. This example also illustrated
passing the complete array through a module port.
SNUG Europe 2006 11 SystemVerilog in a Synopsys Synthesis Design Flow

output packet_t packet_reg [0:31] // array of structures output port

Note: DC changes an unpacked array port to a single port made up of a concatenation of multiple signals.
Section 5 discusses this in more details.

5. Module ports
SystemVerilog relaxes the rules on Verilog module port declarations and the data types that can be passed
through ports. The new port declaration rules that are synthesizable are:

• The internal data type connected to a module input port can be a net or variable type (Verilog only
permitted net types)

• User-defined types can be passed through ports
• Enumerated types can be passed through ports
• Typed structures can be passed through ports
• Typed unions can be passed through ports
• Unpacked arrays and array slices can be passed through ports
• Ports can be defined as “interface ports” (see Section 10)

The example listed in Section 3.5 illustrates using a few of these synthesizable enhancements to module
port declarations. The module header portion is repeated below. Refer to the full example for the user-
defined type declarations used in the module ports.

module packet_register
(input logic clk,
input logic reset,
input logic load_en,
input packet_type_t packet_type, // enumerated type as input port
input cell_t data_cell, // union type as input port
input logic [4:0] write_pointer,
output packet_t packet_reg [0:31] // array of structures output port

);

Potential RTL versus gate-level mismatch. DC will change the ports for structure, union and array
ports. Synthesis flattens these compound ports into a single vector port made up of a concatenation of the
members of the structure, union or array (possibly with unused bits optimized out). This flattening of
compound ports means that the gate-level module is not plug-and-play compatible with an instance of the
original RTL module in a testbench or design netlist. In order to simulate the post-synthesis gate-level
module, the port connections of the module instance must be changed to match the flattened ports of the
gate-level module.

New port mapping option. Synopsys is adding an option to DC (to be available in the planned 2006.06
release) to generate a wrapper module around synthesized modules that have compound ports. The
wrapper module has the same ports as the original RTL module, and contains an instance of the
synthesized module with the compound port members appropriately connected to the ports of the gate-
level module instance. The wrapper module can then be instantiated in the same way as the original RTL
module. Note that the wrapper module will add an additional level of hierarchy to the netlist, which may
affect a testbench uses hierarchical paths to access signals in the synthesized module.

6. Operators
SystemVerilog adds a number of operators to Verilog. The synthesizable operators in the Synopsys
synthesis design flow are:
SNUG Europe 2006 12 SystemVerilog in a Synopsys Synthesis Design Flow

• Increment/decrement operators: ++ and --
• Assignment operators: +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<= and >>>=

Increment/decrement operators: Both pre- and post-increment/decrement operations are supported.
Some examples are:

for (int i=0; i<=7; i++) begin // i++ is same as i = i + 1
...

end

while (a) begin
...
a--; // decrement operation as a statement

end

Assignment operators: These operators perform an operation involving two operands and assign the
result to the left-hand side operand.

case (opcode)
ADD : a += b; // same as a = a + b
DIV2: a >>= 1; // same as a = a >> 1

...
endcase

Synthesis restrictions. DC restricts the use of the increment/decrement and assignment operations to
simple statements. The operators cannot be used in a compound statement, where more than one operation
is performed. The following examples are syntactically legal, but are not synthesizable:

a = i++; // NOT SYNTHESIZABLE: same as i = i + 1; a = i;

if ((--a)) // NOT SYNTHESIZABLE: same as a = a - 1; if (a) ...

b = (a+=5); // NOT SYNTHESIZABLE: same as a = a + 5; b = a;

Reduced potential RTL versus gate-level mismatch. The synthesis restrictions on the increment/
decrement operators and assignment operators prevent using the operators in ways that can result in
ambiguous RTL simulation results, due to simulation event order race conditions. This ambiguity could
lead to RTL functionality versus gate-level functionality mismatches. The synthesis restrictions eliminate
this cause of mismatches.

7. Procedural blocks
The SystemVerilog enhancements to Verilog procedural blocks are simple, but very important for reducing
mismatches between pre-synthesis RTL functionality and post-synthesis gate-level functionality.
SystemVerilog enhances the Verilog always procedural block with three specialized procedural blocks.
These specialized procedural blocks indicate the designer’s intent for the type of hardware behavior that
the procedural code should represent:

always_comb indicates that the intent is to model combinatorial functionality. always_comb
automatically infers a complete combinatorial logic sensitivity list. It is illegal to specify a sensitivity list
with these constructs (incorrect user-specified sensitivity lists are a frequent cause of RTL versus gate-
level functionality mismatches). An example combinatorial block is:

always_comb begin // infers @(sel, a, b)
if (sel) y = a;
else y = b;
SNUG Europe 2006 13 SystemVerilog in a Synopsys Synthesis Design Flow

end

always_latch indicates that the intent is to model latched functionality. always_latch also
automatically infers a complete combinatorial logic sensitivity list.

always_latch // infers @(enable, state)
if (enable)

next_state <= states_t'(state + 1);

always_ff indicates that the intent is to model sequential logic (flip-flop) functionality. With
always_ff, the sensitivity list must be specified. The list cannot be inferred because clock name and
synchronous versus asynchronous reset cannot be inferred from the procedural block code. always_ff
requires that all signals listed in the sensitivity list be qualified with posedge or negedge qualifiers.

always_ff @(posedge clock or negedge resetN) begin
if (!resetN) q <= 0;
else q <= d;

end

These specialized procedural blocks have additional semantic restrictions that help ensure the procedural
blocks synthesize correctly. In brief, these restrictions are:

• Variables assigned by these any of procedural blocks cannot be assigned by any other procedural block.
• No time controls are permitted within any of these procedural blocks (i.e.: the @, # and wait tokens).
• No statements are permitted within any of these procedural blocks that might block the flow of

execution of execution (e.g. a call to a task contains a time control).
• always_comb and always_latch execute once at simulation time zero even if no events trigger the

inferred sensitivity list. This ensures that at time zero, the output values correctly reflect the input
values to that block.

These specialized procedural blocks do not force or guarantee that synthesis will generate the intended
type of logic. If the actual functionality of the procedural code does not represent the intended
functionality, then synthesis will generate logic that represents the actual functionality. In this case, DC
will issue a warning that the actual functionality does not match the intent indicated by the type of
procedural block. The following example specifies an intent to model combinatorial logic, but the
functionality requires latched behavior.

always_comb begin // combinational logic intended
if (enable)

q_out <= d_in; // transparent latch behavior
end

Leda and DC generate warnings that the functionality does not match the specified intent. VCS does not
perform this additional checking. The warning generated by DC for this example is.

Warning: Netlist for always_comb block contains a latch (ELAB-974)

8. Programming statements
SystemVerilog adds several synthesizable extensions to the programming capabilities of Verilog.

8.1 Variables on the left-hand side of continuous assignments

Verilog restricts the data types used on the left-hand side of continuous to only net data types.
SystemVerilog also allows any variable type on the left-hand side of continuous assignments, as long as the
variable does not receive a value from any other source (another continuous assignment, module ports,
SNUG Europe 2006 14 SystemVerilog in a Synopsys Synthesis Design Flow

procedural block assignments or in-line initialization assignments). DC further restricts the SystemVerilog
rules to only allowing bit-vector types (reg, logic and bit), integer types (byte, shortint, int,
integer and longint) and packed structures on the left-hand side of continuous assignments.

module adder
(input logic [31:0] a, b,
 output logic [31:0] sum
);

assign sum = a + b;
endmodule

One obvious advantage of allowing variables on the left-hand side of continuous assignments is that the
designer no longer has to worry about when to use variables in RTL code, and when to use nets. Moreover,
if the modeling style changes from continuous assignments to procedural blocks, or vice versa, the data
type does not need to be changed. Very simply, variables can be used everywhere, except when multi-
source logic is required (such as with a shared data bus).

Using variables on the left-hand side of continuous assignments can also eliminate a common cause of
design errors when modeling at the RTL level in Verilog. When net types are used, an unintentional second
source putting values on the net is not a syntax error; it is a functional problem that must be detected and
debugged. When a variable type is used on the left-hand side of continuous assignments, unintentional
multiple sources are a syntax error which tools can detect at compile/elaboration time.

Potential RTL versus gate-level mismatch. In a typical simulation with VCS, many modules are
compiled together. VCS can look across multiple modules to determine if a variable used on the left-hand
side of a continuous assignment is also written to by some other source. On the other hand, designs are
typically synthesized with DC one module, or possible a few modules, at a time. This means DC cannot
see as much of the design as VCS to determine if a variable is written to by multiple sources.

Modeling guideline. Before synthesizing a design block with DC, check the design block along with the
blocks to which it is connected using Leda or VCS. These tools can more easily detect inadvertent errors of
multiple source logic that span multiple blocks of a design.

8.2 Enhanced for loop declarations

In Verilog, the control variable used in for loops must be declared outside of the for loop. The variable is
then visible throughout the scope in which it is declared, which can lead to misuse of the variable.
SystemVerilog allows the for loop control variable to be declared as part of the for loop declaration. As a
local variable, the loop control variable is not visible outside of the loop. Local for loop variables
synthesize the same as externally declared variables.

for (int i=0; i<=255; i++) begin // local for-loop control variable
...

end

SystemVerilog also allows more than one loop control variable to declared as part of a for loop, and
multiple step assignments to be executed at the end of each pass of the loop. Multiple declarations and
multiple step assignments are separated by commas.

for (int i=0, j=i+OFFSET; i<=15; i++, j++) begin // 2 for-loop variables
...

end

Note: Multiple locally declared for loop variables will be fully supported in the Synopsys synthesis
design flow later in 2006.
SNUG Europe 2006 15 SystemVerilog in a Synopsys Synthesis Design Flow

8.3 unique and priority decision modifiers

SystemVerilog adds two decision modifiers to Verilog, unique and priority. These modifiers can be
used on all forms of case statements (case, casez and casex) as well as if...else statements. The full
details of the simulation checking performed by—and the importance of—unique and priority
decisions is beyond the scope of this paper. The semantics of these decision modifiers are only briefly
described here. Papers presented at previous SNUG conferences provide much more detail on these
decision modifiers (see [7] and [8] in the References section at the end of this paper).

The SystemVerilog unique decision modifier adds run-time checking to if...else and case, casez and
casex decision statements. A unique decision requires that simulation report a run-time warning if
simulation detects that when a decision is entered, either more than one branch selection control of the
decision could be true at the same time, or no branch selection control of the decision statement is true.

The unique modifier also states that tools may evaluate the decision selection controls in any order. VCS
does not change the order from that which is listed in the RTL source code. For synthesis, DC will check
the decision selection controls, and:

• If DC determines that the control values are mutually exclusive, it will create gate-level logic that
evaluates the selection values in parallel, instead of in the order listed in the RTL code.

• If DC determines that the control values are not mutually exclusive, it will issue a warning that the
decision select controls do not meet the designer’s intent of being unique, and maintain the priority that
is shown in the RTL code.

• If DC cannot determine whether or not the control values are mutually exclusive, it will create gate-
level code per what the designer specified in the RTL code. If unique is specified, then the selection
values will be evaluated in parallel.

DC will perform the same checking and optimizations on a unique case (or casez or casex) as with a
case statement that has the combined full_case/parallel_case synthesis pragmas. DC will also
apply these checks and optimizations for a unique if decision. There is no equivalent to this using
synthesis pragmas.

always_comb begin
unique if (select == 2'b00) y = a;

else if (select == 2'b01) y = b;
else if (select == 2'b10) y = c;

end

In simulation, should a select value of 2’b11 occur, VCS will report the following warning:

RT Warning: No condition matches in 'unique if' statement.
"ex20_unique-priority.sv", line 20, at time 30

DC reports the following warning when this example is illustrated:

Warning: If statement marked unique does not cover all possible conditions.
(VER-506)

The priority decision modifier also adds run-time checking to if...else and case, casez and casex
decision statements. Like unique decisions, a priority decision requires that simulation report a run-
time error if simulation detects that when a decision is entered, no branch selection control of the decision
statement is true. DC treats a priority case (or casez or casex) statement as a “full case” statement,
and performs the same checking and optimizations as with a case statement that has just the full_case
synthesis pragma. DC will also apply these checks and optimizations for a priority if decision. There
is no equivalent to this using synthesis pragmas.
SNUG Europe 2006 16 SystemVerilog in a Synopsys Synthesis Design Flow

The following example illustrates an interrupt handler. More than one interrupt can occur at a time, and
priority is given to the lowest numbered interrupt. A priority case statement is used to document that
the designer intends the case statement to evaluated in the order the case select expressions are listed.

always_comb begin
// set outputs to defaults for when there is no interrupt
priority casez (IRQ)

4'b???1: begin // test if IRQ bit 0 is set, ignore other bits
// process interrupt 0

end
4'b??1?: begin // test if IRQ bit 1 is set, ignore other bits

// process interrupt 1
end

4'b?1??: begin // test if IRQ bit 2 is set, ignore other bits
// process interrupt 2

end
4'b1???: begin // test if IRQ bit 3 is set, ignore other bits

// process interrupt 3
end

endcase
end

For this example, DC reports the following messages when the design is elaborated:

Warning: Case statement marked priority does not cover all possible
conditions. (VER-504)
Warning: Case statement is not a full case. (ELAB-909)

Statistics for case statements in always block at line 32...
===
| Line | full/ parallel |
===
| 35 | user/no |
===

Potential RTL versus gate-level mismatch. The name of the priority modifier would seem to
suggest that tools must evaluate the decision selection controls in the order listed in the RTL source code.
DC might not maintain the selection priority shown in the RTL code. DC will check the decision
selection controls, and if it determines that the control values are mutually exclusive, will optimize the
gate-level logic to evaluate the selection values in parallel, instead of in the order listed in the RTL code.
This means the evaluation order of the RTL code and the post-synthesis gate-level logic might not be
equivalent.

The next example illustrates an interrupt handler that expects that only one interrupt can occur at a time.
Priority is given to the lowest numbered interrupt, which is documented using a priority case
statement. In simulation, should multiple interrupt requests occur at the same time, the priority case will
cause a warning to be issued that no case item expression was true.

always_comb begin
// set outputs to defaults for when there is no interrupt
priority case (IRQ)

4'b0001: begin // test if IRQ bit 0 is set, ignore other bits
// process interrupt 0

end
4'b0010: begin // test if IRQ bit 1 is set, ignore other bits
SNUG Europe 2006 17 SystemVerilog in a Synopsys Synthesis Design Flow

// process interrupt 1
end

4'b0100: begin // test if IRQ bit 2 is set, ignore other bits
// process interrupt 2

end
4'b1000: begin // test if IRQ bit 3 is set, ignore other bits

// process interrupt 3
end

endcase
end

In this example, DC detects that the case expression items are mutually exclusive, and might not maintain
the priority that is specified in the RTL code. The report generated by DC for this example is:

Warning: Case statement marked priority does not cover all possible
conditions. (VER-504)
Warning: Case statement is not a full case. (ELAB-909)

Statistics for case statements in always block at line 62...
===
| Line | full/ parallel |
===
| 65 | user/auto |
===

For the example above, explicit synthesis constraints must be specified to force DC to maintain the case
statement priority.

8.4 break, continue and return jump statements

SystemVerilog adds two loop jump statement to Verilog:

• continue — jump to the end of loop, and continue execution of the loop in accordance with the loop
controls

• break — jump out of a loop prematurely, without evaluating the loop controls

These jump statements can be used in place of the Verilog disable statement to control the execution of
for, repeat, while and do...while loops. The break and continue jump statements are more C-like,
and are more intuitive than the Verilog disable statement.

// find first bit set within a range of bits
always_comb begin

first_bit = 0;
for (int i=0; i<=63; i=i+1) begin

if (i < start_range) continue; // skip rest of this pass of loop
if (i > end_range) break; // exit loop
if (data[i]) begin
first_bit = i;
break; // exit loop

end
end // end of the loop

 //... // process data based on first bit set
end

SystemVerilog also adds the C-like return statement to Verilog. The return statement serves two
purposes:
SNUG Europe 2006 18 SystemVerilog in a Synopsys Synthesis Design Flow

• To specify the return value of a function (instead of Verilog’s Pascal-like style of assigning the return
value to the name of the function)

• To exit a task or function prematurely, before reaching the end of the task or function.

9. Task and function enhancements
SystemVerilog enhances Verilog tasks and functions in several ways. Many of the enhancements help write
RTL code in a simpler, more intuitive style than with the Verilog HDL. The enhancements to tasks and
functions that can be used in a Synopsys synthesis design flow are:

• Formal arguments have a default direction of input
• Function return values can be specified using return
• Multiple statements in a task or function do not need to be grouped using begin...end
• Formal arguments can be any data type, including arrays, structures, unions and user-defined types
• Functions can have output and inout formal arguments
• Functions can be declared as void

The ability to pass any data type in and out of tasks and functions significantly extends the capabilities of
these constructs. Being able to specify functions with output arguments as well as a return value further
extends modeling capabilities, especially when using void functions. The declaration of void functions is
very useful in synthesizable RTL models. Functions must execute in zero simulation time and cannot call
other tasks. These restrictions help ensure that pre-synthesis RTL functionality and post-synthesis gate-
level functionality match. A void function is called in the same way as a task, but has the language
restrictions—and synthesis benefits—of a function.

typedef struct {
logic valid;
logic [7:0] check;
logic [63:0] data;

} packet_t;

module packet_register
(input logic clock, reset,
 input logic [63:0] data,
 output packet_t packet);

function void fill_packet (// void function
input logic [63:0] data_in,
output packet_t data_out);

data_out.data = data_in;
for (int i=0; i<=7; i++)

 data_out.check[i] = ^data_in[(8*i)+:8];
data_out.valid = 1;

endfunction

always @(posedge clock)
if (reset)

fill_packet (0, packet); // call void function
else

fill_packet (data, packet);
endmodule
SNUG Europe 2006 19 SystemVerilog in a Synopsys Synthesis Design Flow

10. Interfaces
SystemVerilog adds interface ports to Verilog. An interface port is a complex port type that can include
data type declarations (both nets and variables), user-defined methods, and procedural code. In brief,
interfaces provide a means for designers to centralize the definition of a bus, as opposed to having the
definition scattered throughout several modules in a design. This simplifies the design engineer’s work at
the RTL level, and lets synthesis do the work of distributing the gate-level bus hardware appropriately
throughout the design.

The synthesizable aspects of interfaces include:

• Interface definitions
• Interface definition ports
• Interface data type declarations
• Interface modport definitions
• Interface tasks and functions (methods)
• Importing tasks and functions in modport definitions
• Interface procedural code; must follow synthesis rules
• Generic module interface ports (an instance of any interface can be connected to the port)
• Explicit module interface ports (only an instance of the explicitly named interface can be connected to

the port)

The Synopsys synthesis design flow imposes the following restrictions on the definition and usage of
interfaces.

• An interface definition must be read by DC in before it is referenced as a module port
• In a netlist, interface instances must be instantiated before they are used
• Arrays of interface instances cannot be used
• When an interface method (a task or function) is imported to a module, the task or function be declared

as automatic

The syntax, semantics, and capabilities of interfaces is a large topic that cannot be fully addressed in this
paper. For the same reason, an example interface and usage of an interface is not included here. Readers
are encouraged to refer to other SNUG papers that explain SystemVerilog interfaces and provide extensive
examples (see [9], [10] and [11] in the References section of this paper).

How interface methods are synthesized. Synthesis will duplicate the logic of an imported interface
method in each module that calls that method. This means that, after synthesis, each module using a
method has its own copy of the method functionality, which replaces the shared RTL version. To prevent
RTL versus gate-level functionality mismatches, the Synopsys synthesis design flow requires that interface
tasks and functions that are called from modules must be declared as automatic. Automatic tasks and
functions create new storage for each call to the task or function. When multiple calls are made to an
automatic task or function, each module sees a unique copy of the interface method storage, even though at
the RTL level there is only the one definition of the method. This ensures that RTL simulation behavior of
a method matches the gate-level representation of the method functionality created by synthesis.

Potential RTL versus gate-level mismatch. DC flattens an interface port into separate ports,
representing the collection of ports specified in the interface. This changing of the interface port means that
the synthesized module cannot be directly instantiated into a netlist or testbench in the same way as the
original RTL module. The module instantiation must be modified to match the post-synthesis gate-level
module port list.
SNUG Europe 2006 20 SystemVerilog in a Synopsys Synthesis Design Flow

New port mapping option. Synopsys is adding an option to DC (to be available in the planned 2006.06
release) to generate a wrapper module around synthesized modules that have compound ports. The
wrapper module has the same ports as the original RTL module, and contains an instance of the
synthesized module, with the compound port members appropriately connected to the ports of the gate-
level module instance. The wrapper module can then be instantiated in the same way as the original RTL
module. Note that the wrapper module will add an additional level of hierarchy to the netlist, which may
affect a testbench uses hierarchical paths to access signals in the synthesized module.

11. Module and interface instances
Verilog’s explicit port connection syntax for instantiating a module can be verbose, with considerable
repetitive typing. For example, connecting signals to an instance of a D-flip-flop might look like:

dff i1 (.q(q), .d(d), .clk(mclk), .rst(rst)); // qb not used

SystemVerilog provides two shortcuts for connecting signals to an instance of a module or interface,
referred to as “dot-name” and “dot-star”.

With the dot-name shortcut, when port names and signal names are the same, only the port needs to be
named. The shortcut infers that a local signal the same name as the port will be connected to that instance.

dff i2 (.q, .d, .clk(mclk), .rst); // qb not used

The dot-star shortcut is a wildcard, that infers that all ports and signals of the same name are connected
together.

dff i3 (.*, .clk(mclk), .qb()); // qb not used

DC compilation. A module that contains a module instance using the dot-name shortcut can be read in
by DC separately from the module being instantiated. The port names of the module being instantiated are
explicitly named, which provides DC the information needed to synthesize the module instance. A module
that contains a module instance using the dot-star shortcut cannot be read in by DC separately from the
module being instantiated. Since .* does not provide the port names of the instantiated module, DC must
read in both the module instance and the instantiated module’s port definitions.

12. Assertions
SystemVerilog adds a powerful assertion language to Verilog. Assertions can, and should, be specified as
part of the RTL. The usage of assertions by design engineers is discussed in the SNUG papers “Assertions
Are For Design Engineers, Too!” [13] and “Being Assertive With Your X (SystemVerilog Assertions for
Dummies)” [14].

Synthesis ignores assertions that are embedded in RTL code. This makes it possible for design engineers to
place assertion checks within the design to validate RTL simulation and to guide formal verification,
without having to modify the code before reading it into DC.

Potential RTL versus gate-level mismatch. SystemVerilog assertions can execute “pass statements”
when an assertion evaluates as true, and “fail statements” when an assertion evaluates as false. These pass
and fail statements can be any programming statement. Care must be taken to not put code in a pass or fail
statement that modifies the design behavior. Since DC ignores the assertion, any functionality modeled in
pass/fail statements will not be implemented in the gate-level output from synthesis.
SNUG Europe 2006 21 SystemVerilog in a Synopsys Synthesis Design Flow

13. Miscellaneous enhancements
There are several additional enhancements in SystemVerilog that are supported in the Synopsys synthesis
tool flow, but which are not covered in detail in this paper. These enhancements include:

Auto-fill literal values. SystemVerilog provides a shortcut syntax for setting all bits of a vector of any
size to the same value, using ’0, ’1, ’z or ’x .

Time unit specification. SystemVerilog adds the keywords timeunit and timeprecision for
specifying simulation time units. These keywords can be used as declarations within a module definition or
in $unit, and have several advantages over the Verilog ‘timescale compiler directive.

Macro enhancements. SystemVerilog enhances the Verilog ‘define text substitution macro to make it
more versatile.

Variables in unnamed blocks. SystemVerilog allows local variables to be declared in a begin...end
block, without naming the block. These local variables can only be used within the block. They are not
visible outside of the block, and cannot be referenced using a hierarchical path.

Named ending statements. SystemVerilog allows specifying names with the end statement of modules,
interfaces, named blocks, tasks and functions. This is a convenience enhancement that helps document
code, but does not affect functionality.

Bottom testing loop. SystemVerilog adds a do...while loop, which functions the same as its C
counterpart. In a synthesis design flow, the do...while loop has the same usage restrictions as a Verilog
while loop.

New system tasks and functions. SystemVerilog adds several new system tasks and functions that can
be used in a synthesis design flow (see Table 4 in Section 14).

14. Keyword support
The following tables summarize the SystemVerilog keyword support in the Synopsys synthesis tool flow.

Table 1: Synthesizable SystemVerilog keywords

Table 2: SystemVerilog keywords that are ignored by synthesis

always_comb
always_ff
always_latch
bit
break
byte
const
continue
do

endinterface
enum
import
int
interface
logic
longint
modport
packed

priority
return
shortint
struct
typedef
union
unique
void

assert
assume
endproperty

endsequence
expect
property

sequence
timeprecision
timeunit
SNUG Europe 2006 22 SystemVerilog in a Synopsys Synthesis Design Flow

Table 3: Non synthesizable SystemVerilog keywords

Table 4: Synthesizable SystemVerilog system tasks and functions

Table 5: Non-synthesizable SystemVerilog system tasks and functions

SystemVerilog also defines a number of built-in methods for working with enumerated types, arrays, and
queues. These methods are not supported in the current Synopsys synthesis design flow.

15. Recommendations

15.1 Additional synthesizable constructs

At the time this paper was written, there were a few of SystemVerilog constructs that were not supported in
the Synopsys synthesis tool flow, and which Sutherland HDL hopes will be supported in future versions of
the Synopsys tools used in a synthesis design flow. These additional constructs include:

• Packages

alias
before
bind
bins
binsof
chandle
class
clocking
constraint
context
cover
covergroup
coverpoint
cross
dist
endclass
endclocking
endgroup
endpackage
endprogram
export

extends
extern
final
first_match
foreach
forkjoin
iff
ignore_bins
illegal_bins
inside
intersect
join_any
join_none
local
matches
new
null
package
program
protected
pure

rand
randc
randcase
randsequence
ref
shortreal
solve
static
string
super
tagged
this
throughout
type
uwire
var
virtual
wait_order
wildcard
with
within

$bits
$countones
$dimensions
$high

$increment
$left
$low
$onehot

$onehot0
$right
$size
$unit

$assertkill
$assertoff
$asserton
$bitstoshortreal
$cast
$coverage_control
$coverage_merge
$coverage_save
$error
$exit

$fatal
$fell
$get_coverage
$info
$isunbounded
$isunknown
$load_coverage_db
$past
$root
$rose

$sampled
$set_coverage_db_name
$shortrealtobits
$stable
$typename
$urandom
$urandom_range
$warning
$writememb
$writememh
SNUG Europe 2006 23 SystemVerilog in a Synopsys Synthesis Design Flow

• Enumerated type methods
• User-defined net data types
• Leaving out the optional parameter keyword in module/interface parameter lists
• Task/function calls with named argument passing (similar to named port connections)
• Task/function ref ports
• case...inside select statements
• case...matches select statements
• foreach loops
• Statement labels
• Wildcard equality and inequality operators (==? and !=?)
• Operator overloading
• Array reduction methods
• Bounded queues and queue methods
• uwire single driver nets (defined in the IEEE 1364-2005 Verilog standard[4])
• Nested modules

Do not wait to adopt SystemVerilog in current synthesis design flows! The synthesis subset supported by
Synopsys tools presented in this paper is powerful and useful. The benefits that can be seen from this
subset are considerable. Design engineers can—and should—take advantage of SystemVerilog in current
and forthcoming designs.. The recommendations specified in this section are useful, but do not prevent
benefitting from SystemVerilog in synthesizable designs right now.

These additional constructs are not described in detail in this paper. Two of these constructs, however,
packages and uwire, deserve special recommendations to the Synopsys R&D groups.

15.2 Packages

Packages provide a named shared declaration space, similar to the built-in $unit shared declaration space
discussed in Section 2. The advantage of packages is that they enclose shared declarations in a well-
defined syntactic space, between the keywords package and endpackage. Packages prevent the
declaration “spaghetti code” that could result if $unit declarations are scattered throughout the many files
that make up a typical design. Packages also provide the ability to define operator overloading.

15.3 uwire single driver nets

The new uwire data type is not a SystemVerilog enhancement; it is part of the new IEEE 1364-2005
Verilog standard[4]. The uwire data type (“uwire” is short for “unresolved wire”) only permits a single
source to drive a net. This can prevent modeling errors where single-source functionality is intended, but
the same net name was inadvertently used more than once (either in the design specification, or due to a
typographical error in design code). Currently, the uwire data type is not supported across all the tools
used in a Synopsys synthesis design flow.

The author hopes that when Synopsys R&D implements the uwire type, they do not make the mistake of
some of their competitor synthesis companies. Some synthesis compilers map uwire in RTL code to wire
in the gate-level netlist. This mapping means that the single-driver semantics are lost, which can result in
mismatches in the pre-synthesis RTL functionality and the post-synthesis gate-level functionality. The
author recommends that DC maintain the uwire type in the resultant synthesized netlist, thus preserving
the single-source semantics in post-synthesis simulation.

This same concept can also be applied to single-source variables. SystemVerilog syntax and semantics
require that variables only have a single source when connected to a module output, the left-hand side of a
SNUG Europe 2006 24 SystemVerilog in a Synopsys Synthesis Design Flow

continuous assignment, or are used in always_comb, always_latch or always_ff procedural blocks.
If DC mapped variables used in these contexts to the uwire type in the gate-level netlist, the single-source
semantics would be maintained in post-synthesis simulation. This could help find design problems at
compile/elaboration time, instead of showing up as functional errors.

16. Summary
This paper has defined a synthesis subset for SystemVerilog that is already supported by the major tools
used in a Synopsys tool synthesis design flow, including Leda, VCS, DC, and Formality. Sutherland HDL
uses this synthesis subset in the consulting and training services we provide. We hope that other design
engineers will find the synthesis subset specified in this paper a useful guideline for writing synthesizable
models that are portable across multiple tools in a synthesis design flow.

17. References
[1] “1800-2005 IEEE Standard for System Verilog: Unified Hardware Design, Specification and Verifica-

tion Language”, IEEE, Pascataway, New Jersey. Copyright 2005. ISBN: 0-7381-4811-3.
[2] “1364-2001 IEEE Standard Verilog Hardware Description Language”, IEEE, Pascataway, New Jer-

sey. Copyright 2005. ISBN:0-7381-2827-9.
[3] “1364.1-2002 IEEE Standard for Verilog Register Transfer Level Synthesis”, IEEE, Pascataway, New

Jersey. Copyright 2002. ISBN:0-7381-3502-X.
[4] “1364-2005 IEEE Standard for Verilog Hardware Description Language”, IEEE, Pascataway, New

Jersey. Copyright 2005. ISBN:0-7381-4770-2.
[5] “SystemVerilog from a Synthesis Perspective”, paper by Karen Pieper, Design and Verification Con-

ference (DVCon), 2004.
[6] “SystemVerilog for Design Engineers”, book by Stuart Sutherland, Simon Davidmann, and Peter

Flake, Springer-Verlag, Boston, Massachusetts. Copyright 2004. ISBN: 1-4020-7530-8.
[7] “SystemVerilog Saves the Day—the Evil Twins are Defeated! unique and priority” are the new

Heroes”, paper by Stuart Sutherland, Synopsys Users Group (SNUG) San Jose conference, 2005.
[8] “SystemVerilog's priority & unique—A Solution to Verilog's ‘full_case’ & ‘parallel_case’ Evil

Twins!”, paper by Clifford Cummings, Synopsys Users Group (SNUG) Israel conference, 2005.
[9] “Modeling FIFO Communication Channels Using SystemVerilog Interfaces”, paper by Stuart Suther-

land, Synopsys Users Group (SNUG) Boston conference, 2004.
[10]“SystemVerilog in Use: First RTL Synthesis Experiences with Focus on Interfaces”, paper by Peter

Jensen, Wolfgang Ecker and Thomas Kruse, Synopsys Users Group (SNUG) Europe conference,
2004.

[11]“A User’s Experience with SystemVerilog”, paper by Jonathan Bromley and Michael Smith, Synopsys
Users Group (SNUG) Europe conference, 2004.

[12]“SystemVerilog Implicit Port Connections-Simulation & Synthesis”, paper by Clifford Cummings,
DesignCon conference, 2005 (see www.sunburst-design/papers for an updated version).

[13]“Assertions Are For Design Engineers, Too!”, paper by Don Mills and Stuart Sutherland, Synopsys
Users Group (SNUG) San Jose conference, 2006 and at SNUG Europe conference, 2006.

[14]“Being Assertive With Your X (SystemVerilog Assertions for Dummies)”, paper by Don Mills, Synop-
sys Users Group (SNUG) San Jose conference, 2004.
SNUG Europe 2006 25 SystemVerilog in a Synopsys Synthesis Design Flow

18. Acknowledgements
The author thanks the time spent by several Synopsys R&D engineers, Corporate Applications Engineers,
and marketing personnel in reviewing drafts of this paper, answering questions, and helping to ensure the
paper is accurate and useful.

19. Contacting the author
Mr. Stuart Sutherland is a member of the IEEE 1800 SystemVerilog standards committee, and is the
technical editor of the 1800 SystemVerilog Reference Manual. He is also a member of the IEEE 1364
Verilog Standards Group. Mr. Sutherland founded Sutherland HDL, Inc. in 1992. His company specializes
in providing expert training on Verilog, SystemVerilog, the Verilog PLI, and the SystemVerilog DPI. You
can contact Mr. Sutherland at stuart@sutherland-hdl.com, or by calling +1-503-692-0898.
SNUG Europe 2006 26 SystemVerilog in a Synopsys Synthesis Design Flow

	ABSTRACT
	Table of Contents
	1. Introduction
	2. Shared declaration spaces
	3. Enhancements to Verilog data types
	3.1 Type definitions (typedef)
	3.2 New variable types
	3.3 Enumerated types
	3.4 Structures
	3.5 Unions
	3.6 Casting
	3.7 Parameter and localparam constants
	3.8 const constants

	4. Data arrays
	4.1 Packed arrays
	4.2 Unpacked arrays

	5. Module ports
	6. Operators
	7. Procedural blocks
	8. Programming statements
	8.1 Variables on the left-hand side of continuous assignments
	8.2 Enhanced for loop declarations
	8.3 unique and priority decision modifiers
	8.4 break, continue and return jump statements

	9. Task and function enhancements
	10. Interfaces
	11. Module and interface instances
	12. Assertions
	13. Miscellaneous enhancements
	14. Keyword support
	15. Recommendations
	15.1 Additional synthesizable constructs
	15.2 Packages
	15.3 uwire single driver nets

	16. Summary
	17. References
	18. Acknowledgements
	19. Contacting the author

